[1]
H.K. Hahn, B. Preim, D. Selle, et al: Visualization and interaction techniques for the exploration of vascular structures, in: Proceedings of the Conference on Visualization'01, USA, San Diego(2001), pp.395-402.
DOI: 10.1109/visual.2001.964538
Google Scholar
[2]
C. Kirbas, F. Quek: A review of vessel extraction techniques and algorithms, ACM Computing Surveys, Vol. 36 (2) (2004), pp.81-121.
DOI: 10.1145/1031120.1031121
Google Scholar
[3]
N. Niki, Y. Kawata, H. Sato, et al: 3D imaging of blood vessels using X-ray rotational angiographic system, in: IEEE Nuclear Science Symposium and Medical Imaging Conference, USA, San Francisco(1993), Vol. 3, pp.1873-1877.
DOI: 10.1109/nssmic.1993.373618
Google Scholar
[4]
C. Molina, G. Prause, P. Radeva, et al: 3-D catheter path reconstruction from biplane angiograms, in: Proceedings of the SPIE, USA, Bellingham(1998), Vol. 3338, pp.504-512.
DOI: 10.1117/12.310929
Google Scholar
[5]
D. Guo, P. Richardson: Automatic vessel extraction from angiogram images, IEEE Computers in Cardiology, Vol. 25 (14) (1998), pp.441-444.
DOI: 10.1109/cic.1998.731897
Google Scholar
[6]
B. Preim, S. Oeltze: 3D visualization of vasculature: an overview, Visualization in Medicine and Life Sciences, Springer-Verlag, Berlin(2007).
DOI: 10.1007/978-3-540-72630-2_3
Google Scholar
[7]
Y. Sato, N. Shiraga, S. Nakajima, et al: Local maximum intensity projection (LMIP): a new rendering method for vascular visualization, Journal of Computer Aided Tomography, Vol. 22 (6) (1998), pp.912-917.
DOI: 10.1097/00004728-199811000-00014
Google Scholar
[8]
A. Hoover, V. Kouznetsova, M. Goldbaum: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Transactions on Medical Imaging, Vol. 19 (3) (2000), pp.203-210.
DOI: 10.1109/42.845178
Google Scholar
[9]
S. C. Chaudhuri, N. Katz, M. Nelson, et al: Detection of blood vessels in retinal images using two dimensional blood vessel filters, IEEE Transactions on Medical Imaging, Vol. 8 (3) (1989), pp.263-269.
DOI: 10.1109/42.34715
Google Scholar
[10]
C. Y. Xu, J. L. Prince: Snakes, shapes, and gradient vector flow, IEEE Transactions on Image Process, Vol. 7 (3) (1998), pp.359-369.
DOI: 10.1109/83.661186
Google Scholar
[11]
K. W. Sum, P. Y. S. Cheung: Boundary vector field for parametric active contours, Pattern Recognition, Vol. 40 (6) (2007), pp.1635-1645.
DOI: 10.1016/j.patcog.2006.11.006
Google Scholar
[12]
H. Luo, Q. Lu, R. S. Acharya, et al: Robust snake model, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island(2000), Vol. 1, pp.452-457.
DOI: 10.1109/cvpr.2000.855854
Google Scholar
[13]
Y. Tolias, S. M. Panas: A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering, IEEE Transactions on Medical Imaging, Vol. 17 (2) (1998), pp.263-273.
DOI: 10.1109/42.700738
Google Scholar
[14]
S. Osher, J.A. Sethian: Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation, Journal of Computational Physics, Vol. 79(1)(1988), pp.12-49.
DOI: 10.1016/0021-9991(88)90002-2
Google Scholar
[15]
L. Alvarez, P.L. Lions, J.M. Morel: Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal on Numerical Analysis, Vol. 29(3)(1992), pp.845-866.
DOI: 10.1137/0729052
Google Scholar
[16]
R. Malladi, J.A. Sethian, B. Vemuri: Shape modeling with front propagation: a level set approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17(2)(1995), pp.158-174.
DOI: 10.1109/34.368173
Google Scholar
[17]
C. Samon, L. Blanc-Feraud, G. Aubert, et al: Level set model for image classification, International Journal of Computer Vision, Vol. 40(3)(2000), pp.187-197.
Google Scholar
[18]
B. Preim, S. Oeltze: 3D visualization of vasculature: an overview, Visualization in Medicine and Life Sciences, Springer-Verlag, Berlin(2007).
DOI: 10.1007/978-3-540-72630-2_3
Google Scholar
[19]
Q.X. Gao, J.Z. Yang, D.Z. Zhao, et al: Pulmonary vessel for X-ray images segmented through canny level-et, Journal of System Simulation, Vol. 20(20)(2008), pp.5534-5537.
Google Scholar
[20]
J.A. Sethian: Adaptive fast marching and level set methods for propagating interfaces, Acta Math Univ. Comenianae, Vol. LXVII(1)(1998), pp.3-15.
Google Scholar
[21]
A. Yezzi, S. Kichenassamy, A. Kumar, et al: A geometric snake model for segmentation of medical imagery, IEEE Transactions on Medical Imaging, Vol. 16(2)(1997), pp.199-209.
DOI: 10.1109/42.563665
Google Scholar
[22]
X.R. Lv, X.B. Gao, H. Zou: Interactive curved planar reformation based on snake model, Computed Medical Imaging and Graphics, Vol. 32(8)(2008), pp.662-669.
DOI: 10.1016/j.compmedimag.2008.08.002
Google Scholar
[23]
J.G. Sun, C.G. Yang: Computer Graphics (Tsinghua University Press, Beijing 1995).
Google Scholar