Generalized Projective Synchronization for Fractional-Order Chaotic Systems with Different Fractional Order

Article Preview

Abstract:

In this paper, we propose a generalized projective synchronization with different scaling factor for fractional-order chaotic systems with different fractional order. A method of constructing response system is given. The generalized projective synchronization conditions are obtained theoretically. Finally, the fractional-order Chen system is used to demonstrate the effectiveness of the proposed schemes.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 474-476)

Pages:

2106-2109

Citation:

Online since:

April 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. G. Yu, H. X. Li, The synchronization of fractional-order Rössler hyperchaotic systems, Physica A, Vol. 387, 2008, pp.1393-1403.

DOI: 10.1016/j.physa.2007.10.052

Google Scholar

[2] C. G. Li, G. R. Chen, Chaos in the fractional order Chen system and its control, Chaos, Solitons and Fractals, Vol. 22, 2004, pp.549-554.

DOI: 10.1016/j.chaos.2004.02.035

Google Scholar

[3] C. P. Li, G. J. Peng, Chaos in Chen's system with a fractional order, Chaos, Solitons and Fractals, Vol. 22, 2004, pp.443-450.

DOI: 10.1016/j.chaos.2004.02.013

Google Scholar

[4] I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett., Vol. 91, 2003, pp.034101-034104.

DOI: 10.1103/physrevlett.96.199902

Google Scholar

[5] Z. M. Ge, C. Y. Ou, Chaos in a fractional order modified Duffing system, Chaos, Solitons and Fractals, Vol. 34, 2007, pp.262-291.

DOI: 10.1016/j.chaos.2005.11.059

Google Scholar

[6] C. G. Li, G. R. Chen, Chaos and hyperchaos in the fractional order Rossler equations, Physica A, Vol. 341, 2004, pp.55-61.

Google Scholar

[7] C. G. Li, X. Liao, J. B. Yu, Synchronization of fractional order chaotic systems, Phys. Rev. E, Vol. 68, 2003, pp.067203-067205.

Google Scholar

[8] T. S. Zhou, C. P. Li, Synchronization in fractional-order differential systems, Physica D, Vol. 212, 2005, pp.111-125.

Google Scholar

[9] C. P. Li, W. H. Deng, D. L. Xu, Chaos synchronization of the Chua system with a fractional order, Physica A, Vol. 360, 2006, pp.171-185.

DOI: 10.1016/j.physa.2005.06.078

Google Scholar

[10] J. W. Wang, X. H. Xiong, Y. Zhang, Extending synchronization scheme to chaotic fractional-order Chen systems, Physica A, Vol. 370, 2006, pp.279-285.

DOI: 10.1016/j.physa.2006.03.021

Google Scholar

[11] J. P. Yan, C. P. Li, On chaos synchronization of fractional differential equations, Chaos, Solitons and Fractals, Vol. 32, 2007, pp.725-735.

DOI: 10.1016/j.chaos.2005.11.062

Google Scholar

[12] C. P. Li, J. P. Yan, The synchronization of three fractional differential systems, Chaos, Solitons and Fractals, Vol. 32, 2007, pp.751-757.

DOI: 10.1016/j.chaos.2005.11.020

Google Scholar

[13] G. J. Peng, Y. L. Jiang, Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal, Physics Letters A, Vol. 372, 2008, pp.3963-3970.

DOI: 10.1016/j.physleta.2008.01.061

Google Scholar

[14] X. R. Chen, C. X. Liu, Y. X. Li, Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system, Acta Physica Sinica, Vol. 57, 2008, pp.1453-1457.

DOI: 10.7498/aps.57.1453

Google Scholar

[15] G.J. Peng, Y.L. Jiang, F. Chen, Generalized projective synchronization of fractional order chaotic systems, Physica A, Vol. 387, 2008, pp.3738-3746.

DOI: 10.1016/j.physa.2008.02.057

Google Scholar

[16] S.Q. Shao, Controlling general projective synchronization of fractional order Rossler systems, Chaos, Solitons and Fractals, Vol. 39, 2009, pp.1572-1577.

DOI: 10.1016/j.chaos.2007.06.011

Google Scholar

[17] P. Zhou, Y. M. Cheng, F. Kuang, Synchronization between fractional-order chaotic systems and integer orders chaotic systems, Chinese Physics B, Vol. 19, 2010, pp.09050301-09050306.

DOI: 10.1088/1674-1056/19/9/090503

Google Scholar