[1]
Y. G. Yu, H. X. Li, The synchronization of fractional-order Rössler hyperchaotic systems, Physica A, Vol. 387, 2008, pp.1393-1403.
DOI: 10.1016/j.physa.2007.10.052
Google Scholar
[2]
C. G. Li, G. R. Chen, Chaos in the fractional order Chen system and its control, Chaos, Solitons and Fractals, Vol. 22, 2004, pp.549-554.
DOI: 10.1016/j.chaos.2004.02.035
Google Scholar
[3]
C. P. Li, G. J. Peng, Chaos in Chen's system with a fractional order, Chaos, Solitons and Fractals, Vol. 22, 2004, pp.443-450.
DOI: 10.1016/j.chaos.2004.02.013
Google Scholar
[4]
I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett., Vol. 91, 2003, pp.034101-034104.
DOI: 10.1103/physrevlett.96.199902
Google Scholar
[5]
Z. M. Ge, C. Y. Ou, Chaos in a fractional order modified Duffing system, Chaos, Solitons and Fractals, Vol. 34, 2007, pp.262-291.
DOI: 10.1016/j.chaos.2005.11.059
Google Scholar
[6]
C. G. Li, G. R. Chen, Chaos and hyperchaos in the fractional order Rossler equations, Physica A, Vol. 341, 2004, pp.55-61.
Google Scholar
[7]
C. G. Li, X. Liao, J. B. Yu, Synchronization of fractional order chaotic systems, Phys. Rev. E, Vol. 68, 2003, pp.067203-067205.
Google Scholar
[8]
T. S. Zhou, C. P. Li, Synchronization in fractional-order differential systems, Physica D, Vol. 212, 2005, pp.111-125.
Google Scholar
[9]
C. P. Li, W. H. Deng, D. L. Xu, Chaos synchronization of the Chua system with a fractional order, Physica A, Vol. 360, 2006, pp.171-185.
DOI: 10.1016/j.physa.2005.06.078
Google Scholar
[10]
J. W. Wang, X. H. Xiong, Y. Zhang, Extending synchronization scheme to chaotic fractional-order Chen systems, Physica A, Vol. 370, 2006, pp.279-285.
DOI: 10.1016/j.physa.2006.03.021
Google Scholar
[11]
J. P. Yan, C. P. Li, On chaos synchronization of fractional differential equations, Chaos, Solitons and Fractals, Vol. 32, 2007, pp.725-735.
DOI: 10.1016/j.chaos.2005.11.062
Google Scholar
[12]
C. P. Li, J. P. Yan, The synchronization of three fractional differential systems, Chaos, Solitons and Fractals, Vol. 32, 2007, pp.751-757.
DOI: 10.1016/j.chaos.2005.11.020
Google Scholar
[13]
G. J. Peng, Y. L. Jiang, Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal, Physics Letters A, Vol. 372, 2008, pp.3963-3970.
DOI: 10.1016/j.physleta.2008.01.061
Google Scholar
[14]
X. R. Chen, C. X. Liu, Y. X. Li, Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system, Acta Physica Sinica, Vol. 57, 2008, pp.1453-1457.
DOI: 10.7498/aps.57.1453
Google Scholar
[15]
G.J. Peng, Y.L. Jiang, F. Chen, Generalized projective synchronization of fractional order chaotic systems, Physica A, Vol. 387, 2008, pp.3738-3746.
DOI: 10.1016/j.physa.2008.02.057
Google Scholar
[16]
S.Q. Shao, Controlling general projective synchronization of fractional order Rossler systems, Chaos, Solitons and Fractals, Vol. 39, 2009, pp.1572-1577.
DOI: 10.1016/j.chaos.2007.06.011
Google Scholar
[17]
P. Zhou, Y. M. Cheng, F. Kuang, Synchronization between fractional-order chaotic systems and integer orders chaotic systems, Chinese Physics B, Vol. 19, 2010, pp.09050301-09050306.
DOI: 10.1088/1674-1056/19/9/090503
Google Scholar