Martensitic Transformation Behavior of Ni54.75Mn13.25Fe7Ga25 Ferromagnetic Shape Memory Thin Film

Article Preview

Abstract:

The Ni54.75Mn13.25Fe7Ga25 (at.%) ferromagnetic shape memory thin film was deposited onto silicon substrates using radio-frequency magnetron sputtering. The martensitic transformation, crystallographic structure, microstructure and magnetic-field induced strain were investigated by means of Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD), Transmission Electron Microscope (TEM) and metal strain gauges. The results show that the martensite transformation temperature Ms is 296.6 K, the film with typical self-accommodated morphology is orthorhombic structure at room temperature. The field-induced strain of 52 ppm is obtained in this shape memory thin film.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 474-476)

Pages:

408-412

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.A. Chernenko, E. Cesari, V.V. Kokorin and I.N. Vitenko: Scr Metall Mater Vol. 33 (1995), p.1239.

Google Scholar

[2] G.H. Wu, C.H. Yu, L.Q. Meng, J.L. Chen, F.M. Yang, S.R. Qi and W.S. Zhan: Appl Phys Lett Vol. 75 (1999), p.2990.

Google Scholar

[3] S.J. Murray, M. Marioni, S.M. Allen and R.C. O'Handley: Appl Phys Lett Vol. 77 (2000), p.886.

Google Scholar

[4] V.V. Khovailo, R. Kainuma, T. Abe, K. Oikawa and T. Takagi: Scripta Mater Vol. 51 (2004), p.13.

Google Scholar

[5] A. Sozinov, A.A. Likhachev, N. Lanska and K. Ullakko: Appl Phys Lett Vol. 80 (2002), p.1746.

Google Scholar

[6] A.A. Cherechukin, I.E. Dikshtein, D.I. Ermakov, A.V. Glebov, V.V. Koledov, D.A. Kosolapov, V.G. Shavrov, A.A. Tulaikova, E.P. Krasnoperov and T. Takagi: Phys Lett A Vol. 291 (2001), p.175.

DOI: 10.1016/s0375-9601(01)00688-0

Google Scholar

[7] G.H. Wu, W.H. Wang, J.L. Chen, L. Ao, Z.H. Liu and W.S. Zhan: Appl Phys Lett Vol. 80 (2002), p.634.

Google Scholar

[8] Z.H. Liu, M. Zhang, W.Q. Wang, W.H. Wang, J.L. Chen and G.H. Wu: J Appl Phys Vol. 92 (2002), p.5006.

Google Scholar

[9] H.B. Wang, F. Chen, Z.Y. Gao, W. Cai and L.C. Zhao: Material Science and Engineering A Vol. 438-440 (2006), p.990.

Google Scholar

[10] R. Tickle, R.D. James: J Magn Magn Mater Vol. 195 (1999), p.627.

Google Scholar

[11] C.M. Wayman: Suppl Trans JIM Vol. 17 (1976), p.159.

Google Scholar

[12] J. Pons, V.A. Chernenko, R. Santamarta and E. Cesari: Acta Mater Vol. 48 (2000), p.3027.

Google Scholar

[13] Y. Kishi, Z. Yajima, K. Shimizu and M. Wuttig: Materials Science and Engineering A Vol. 378 (2004), p.361.

Google Scholar

[14] M. Han, J.C. Bennett, M.A. Gharghouri, J. Chen and C.V. Hyatt: Acta Materialia Vol. 55 (2007), p.1731.

Google Scholar

[15] Z.Y. Gao, W. Cai, L.C. Zhao, W. H. Wang, G.H. Wu, B.G. Shen and W.S. Zhan: Materials Science and Technology Vol. 19 (2003), p.1622.

Google Scholar