Theoretical Investigation of the Adsorption of Nh3 on B-Doped Graphene

Article Preview

Abstract:

The geometrical structures, the electronic structures, and the NH3 adsorption properties of pure and B-doped graphene have been investigated using density-functional theory. The density of states (DOS) of pure and B-doped graphene, the adsorption configurations and the adsorption energies of NH3 adsorbed on pure and B-doped graphene, and the charge transfer between NH3 and B-doped graphene have been calculated in details. The results indicate that boron doping can enhance the DOS at the Fermi level and slightly enhance the physical adsorption of NH3 on the surface of graphene. Furthermore, the doping of boron can result in the charge redistribution of graphene, which can induce the charge transfer between NH3 and graphene and change the transport properties of graphene.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 474-476)

Pages:

720-724

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov: Science Vol. 306 (2004), p.666.

DOI: 10.1126/science.1102896

Google Scholar

[2] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam and A. Govindaraj: Angew. Chem. Int. Ed. Vol. 48 (2009), p.7752.

Google Scholar

[3] C.N.R. Rao, K. Biswas, K.S. Subrahmanyam and A. Govindaraj: J. Mater. Chem. Vol. 19 (2009), p.2457.

Google Scholar

[4] C. Gomez-Navarro, M. Burghard and K. Kern: Nano Lett. Vol. 8 (2008), p. (2045).

Google Scholar

[5] D.C. Wei, Y.Q. Liu, Y. Wang, H.L. Zhang, L.P. Huang and G. Yu: Nano Lett. Vol. 9 (2009), p.1752.

Google Scholar

[6] L. Shen, M.G. Zeng, S.W. Yang, C. Zhang, X.F. Wang and Y.P. Feng: J. Am. Chem. Soc. Vol. 132 (2010), p.11481.

Google Scholar

[7] B.N. Szafranek, D. Schall, M. Otto, D. Neumaier and H. Kurz: Appl. Phys. Lett. Vol. 96 (2010), p.112103.

DOI: 10.1063/1.3364139

Google Scholar

[8] U.A. Palnitkar, R.V. Kashid, M.A. More, D.S. Joag, L.S. Panchakarla and C.N.R. Rao: Appl. Phys. Lett. Vol. 97 (2010), p.063102.

DOI: 10.1063/1.3464168

Google Scholar

[9] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson and K.S. Novoselov: Nature Materials Vol. 6 (2007), p.652.

DOI: 10.1038/nmat1967

Google Scholar

[10] J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner and B.H. Weiller: ACS Nano Vol. 3 (2009), p.301.

Google Scholar

[11] J.T. Robinson, F.K. Perkins, E.S. Snow, Z.Q. Wei and P.E. Sheehan: Nano Lett. Vol. 8 (2008), p.3137.

Google Scholar

[12] O. Leenaerts, B. Partoens and F.M. Peeters: Phys. Rev. B Vol. 77 (2008), p.125416.

Google Scholar

[13] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pichard, P.J. Hasnip, S.J. Clark and M.C. Payne: J. Phys.: Condens. Matter Vol. 14 (2002), p.2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[14] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[15] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892.

Google Scholar

[16] B.G. Pfrommer, M. Cote, S.G. Louie and M.L. Cohen: J. Comput. Phys. Vol. 131 (1997), p.233.

Google Scholar

[17] H.J. Monkhorst and J.D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[18] B. Akdim, X. Duan and R. Pachter: Nano Lett. Vol. 3 (2003), p.1209.

Google Scholar