[1]
Rioul O, Vetterli M: Wavelet and signal processing. IEEE Signal Processing Magazine Vol. 8 (1991),pp.14-38.
DOI: 10.1109/79.91217
Google Scholar
[2]
Cheng J S, Yu D J and Yu Y: Research on the intrinsic mode function (IMF) criterion in EMD method. Mechanical Systems and Signal Processing Vol. 20 (2006), pp.817-24.
DOI: 10.1016/j.ymssp.2005.09.011
Google Scholar
[3]
Rubini R and Meneghetti U: Application of the envelope and wavelet transform analysis for the diagnosis of incipient faults in ball bearings. Mechanical Systems and Signal Processing Vol. 15 (2001), pp.287-302.
DOI: 10.1006/mssp.2000.1330
Google Scholar
[4]
Bruns: A Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches. Journal of Neuroscience Methods Vol. 137 (2004), pp.321-32.
DOI: 10.1016/j.jneumeth.2004.03.002
Google Scholar
[5]
Huang N E et al: The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society of London Series A—Mathematical Physical and Engineering Sciences (1998), pp.903-95.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[6]
Hpilips S C, Gledhill R J, Essex J W and Edge C M: Application of the Hilbert-Huang transform to the analysis of molecular dynamic simulations. Journal of Physical Chemistry A 107 (2003), pp.4869-76.
DOI: 10.1021/jp0261758
Google Scholar
[7]
Yu D J, Cheng J S and Yang Y: Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings. Mechanical Systems and Signal Processing Vol. 19 (2005), pp.259-70.
DOI: 10.1016/s0888-3270(03)00099-2
Google Scholar
[8]
Huang N E, Shen Z and Long S R: A new view of nonlinear water waves: the Hilbert spectrum Annu. Rev. Fluid Mech. Vol. 31(1999), pp.417-57.
DOI: 10.1146/annurev.fluid.31.1.417
Google Scholar
[9]
Leung H, Lo T and Wang S: Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Transactions on Neural Networks Vol. 12 (2001) , pp.1163-72.
DOI: 10.1109/72.950144
Google Scholar
[10]
Angrisani L: A wavelet packet transform-based approach for interference measurement in spread spectrum wireless communication systems. IEEE Transaction on Instrumentation and Measurement Vol. 54 (2005), pp.2272-80.
DOI: 10.1109/tim.2005.858124
Google Scholar
[11]
Wickerhauser M V: Adapted wavelet analysis from theory to software (New York: IEEE Press)( 1994).
Google Scholar
[12]
Kyprianou A, Lewin P L, Efthimious V, Stavrou A and Georghiou G E: Wavelet packet denoising for online partial discharge detection in cables and its application to experimental field results. Meas. Sci. Technol. Vol. 17 (2006) , pp.2367-2379.
DOI: 10.1088/0957-0233/17/9/001
Google Scholar
[13]
Fan X F and Zuo M J: Gearbox fault detection using Hilbert and wavelet packet transform. Mechanical Systems and Signal Processing Vol. 20 (2006), pp.966-982.
DOI: 10.1016/j.ymssp.2005.08.032
Google Scholar