[1]
O. Bonneau, M. Lachemi, E. Dallaire, et al: Mechanical properties and durability of two industrial reactive powder concretes, ACI Mater J Vol. 94 (1997), p.286–90.
DOI: 10.14359/310
Google Scholar
[2]
V. Matte, M. Moranville: Durability of reactive powder composites: influence of silica fume on the leaching properties of very low water/binder pastes, Cement Concrete Comp Vol. 21 (1999), pp.1-9.
DOI: 10.1016/s0958-9465(98)00025-0
Google Scholar
[3]
C.L.W. Allan, A.C. Paul, B. Richard, et al: Simultaneous measurement of shrinkage and temperature of reactive powder concrete at early-age using fiber Bragg grating sensors, Cement Concrete Comp Vol. 29 (2007), pp.490-7.
DOI: 10.1016/j.cemconcomp.2007.02.003
Google Scholar
[4]
P. Richard, M. Cheyrezy: Reactive powder concretes with high ductility and 200-800 MPa compressive strength, ACI SP Vol. 144 (1994), pp.507-18.
DOI: 10.14359/4536
Google Scholar
[5]
P. Richard, M. Cheyrezy: Composition of reactive powder concretes, Cement Concrete Res Vol. 25 (1995), pp.1501-11.
DOI: 10.1016/0008-8846(95)00144-2
Google Scholar
[6]
P.C. Aïtcin: Cements of yesterday and today: concrete of tomorrow, Cement Concrete Res Vol. 30 (2000), pp.1349-59.
Google Scholar
[7]
O. Bonneau, C. Vernetb, M. Moranvillea, et al: Characterization of the granular packing and percolation threshold of reactive powder concrete, Cement Concrete Res Vol. 30 (2000), pp.1861-7.
DOI: 10.1016/s0008-8846(00)00300-8
Google Scholar
[8]
M.F. Cyr, S.P. Shah: Proceedings of the international conference on advances in building technology, Advances in concrete technology, Hong Kong, China (2002), p.17–27.
DOI: 10.1016/b978-008044100-9/50005-x
Google Scholar
[9]
Y.W. Chan, S.H. Chu: Effect of silica fume on steel fiber bond characteristics in reactive powder concrete, Cement Concrete Res Vol. 34 (2004), pp.1167-72.
DOI: 10.1016/j.cemconres.2003.12.023
Google Scholar
[10]
E. Shaheen, N. Shrive: Optimization of mechanical properties and durability of reactive powder concrete, ACI Mater J Vol. 103 (2006), pp.444-51.
Google Scholar
[11]
M.G. Lee, Y.C. Wang, C.T. Chiu: A preliminary study of reactive powder concrete as a new repair material, Constr Build Mater Vol. 21 (2007), pp.182-9.
Google Scholar
[12]
H. Yazıcı, H. Yiğiter, A.Ş. Karabulut, et al: Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete, Fuel Vol. 87 (2008), pp.2401-7.
DOI: 10.1016/j.fuel.2008.03.005
Google Scholar
[13]
Y.S. Tai: Uniaxial compression tests at various loading rates for reactive powder concrete, Theoretical and Applied Fracture Mechanics Vol. 52 (2009), pp.14-21.
DOI: 10.1016/j.tafmec.2009.06.001
Google Scholar
[14]
Y.S. Zhang, W. Sun, S.F. Liu, et al: Preparation of C200 green reactive powder concrete and its static-dynamic behaviors, Cement Concrete Comp Vol. 30 (2008), pp.831-8.
DOI: 10.1016/j.cemconcomp.2008.06.008
Google Scholar
[15]
H. Yazıcı, M.Y. Yardımcı, S. Aydın, et al: Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Constr Build Mater Vol. 23 (2009), pp.1223-31.
DOI: 10.1016/j.conbuildmat.2008.08.003
Google Scholar
[16]
ACI committee 544: Measurement of propertise of fibre reinforced cement. ACI Mater J Vol. 85 (1988), pp.583-9.
Google Scholar
[17]
Y.P. Song: Fatigue behavior and design principle of concrete structures (in Chinese). Beijing: China Machine Press (2006), pp.169-78.
Google Scholar