Effect of La2O3 on the Electrical Properties of WO3-Based Varistor Ceramics

Article Preview

Abstract:

The nonlinear electrical behavior and dielectric properties of WO3-based ceramics with various La2O3 contents have been investigated. Breakdown voltages Eb of WO3 doped with La2O3 are lower than that of undoped WO3, indicating that the dopant can reduce the breakdown voltage. The dielectric constant of doped samples is higher than that of undoped samples, and the high dielectric constant makes them suitable as capacitor-varistor materials. The theory defects in the crystal lattice was introduced to explain the nonlinear electricial behavior of the La2O3-doped WO3 ceramics. In view of these electrical characteristics, the WO3 ceramic doped with La2O3 is a viable candidate for capacitor-varistor functional devices.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 480-481)

Pages:

137-141

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. R. Clarke: J. Am. Ceram. Soc. Vol. 82 (1999), p.485.

Google Scholar

[2] A. B. Gaikwad, S. C. Navale and V. Ravi: Mater. Sci. Eng. B Vol. 123 (2005), p.50.

Google Scholar

[3] V. O. Makarov and M. Trontelj: J. Eur. Ceram. Soc. Vol. 20 (2000), p.747.

Google Scholar

[4] C.P. Li, J.F. Wang, W.B. Su, H.C. Chen and Y.J. Wang: Mater. Lett. Vol. 57 (2003), p.1400.

Google Scholar

[5] V. Makarov and M. Trontelj: J. Eur. Cerm. Soc. Vol. 16 (1996), p.791.

Google Scholar

[5] S. H. Luo, Z. L. Tang, J. Y. Li and Z. T. Zhang: Ceram. Int. Vol. 34 (2008), P. 1345.

Google Scholar

[6] V. Makarov and M. J. Trontelj: Mater. Sci. Lett. Vol. 13 (1994), p.937.

Google Scholar

[7] W. P. Chen, X. F. Zhu, Z. J. Shen, J. Q. Sun, J. Shi, X. G. Qin, Y. Wang and H. L. W. Chan: J. Mater. Sci. Vol. 42 (2007), p.2524.

Google Scholar

[8] Y. Wang, X. S. Yang, Z. L. Liu and K. L. Yao: Mater. Lett. Vol. 58 (2004), p.1017.

Google Scholar

[9] A.G.S. Filho, J.G.N. Matias, N.L. Dias and V.N. Freire: J. Mater. Sci. Vol. 34 (1999), p.1031.

Google Scholar

[10] Y. Wang, X.S. Yang, Z.L. Liu and K.L. Yao: Mater. Lett. Vol. 58 (2004), p.1017.

Google Scholar

[11] X.S. Yang, Y. Wang, L. Dong , M. Chen and F. Zhang: Mater. Sci. Eng. B Vol. 110 (2004), p.6.

Google Scholar

[12] C. W. Nahm: Mater. Lett. Vol. 57 (2003), p.1317.

Google Scholar

[13] C. W. Nahm: Solid State Commun. Vol. 126 (2003), p.281.

Google Scholar

[14] C.P. Li, J.F. Wang, H.C. Chen and W.B. Su: Mater. Chem. Phys. Vol. 74 (2002), p.187.

Google Scholar

[15] T. K. Gupta: J. Am. Ceram. Soc. Vol. 73(1990), p.1817.

Google Scholar

[16] Li C P, Wang J F, Wang X S, Su W B, Chen H C and Zhuang D X: Mater. Sci. Eng. B Vol. 85 (2001), P. 6.

Google Scholar

[17] J. M. Wu and C. J. Chen: J. Mater. Sci. Vol. 23 (1988), p.1157.

Google Scholar

[18] W. Y. Wang, D. F. Zhang, T. Xu, X. F. Li, T. Zhou and X. L. Chen: J. Alloys Compd. Vol. 335 (2002), p.210.

Google Scholar