p.527
p.533
p.539
p.546
p.550
p.556
p.560
p.568
p.574
Modeling Wood Crystallinity with Multiple Linear Regression
Abstract:
The crystallinity of wood has an important effect on the physical, mechanical and chemical properties of cellulose fibers. Crystallinity of larch plantation wood was investigated with near infrared spectroscopy and multiple linear regression. Five typical wave lengths were selected to establish prediction model for wood crystallinity. Full-cross validation was applied to the model development. The model performance is satisfied with prediction correlation coefficient of 0.896 and bias of 0.0004. The results indicated that prediction of wood crystallinity with near infrared spectroscopy and multiple linear regression is feasible, which provides a fast and nondestructive method for wood crystallinity prediction.
Info:
Periodical:
Pages:
550-555
Citation:
Online since:
June 2011
Authors:
Price:
Сopyright:
© 2011 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: