Silicon Nitride Grain Boundary Glasses: Chemistry, Structure and Properties

Article Preview

Abstract:

Silicon nitride is recognised as a high performance material for both wear resistant and high temperature structural applications. Oxide sintering additives such as yttrium oxide and alumina are used to provide conditions for liquid phase sintering, during which the additives react with surface silica present on the Si3N4 particles and some of the nitride to form an oxynitride liquid which allows densification and transformation of - to -Si3N4 and on cooling remains as an intergranular oxynitride glass. This paper provides an overview of liquid phase sintering of silicon nitride ceramics, grain boundary oxynitride glasses and the effects of chemistry and structure on properties. As nitrogen substitutes for oxygen in oxynitride glasses, increases are observed in glass transition and softening temperatures, viscosities, elastic moduli and microhardness. These property changes are compared with known effects of grain boundary glass chemistry in silicon nitride ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-51

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Hampshire: Metals Forum, Vol. 7 (1984) p.162.

Google Scholar

[2] S. Hampshire: in: Structure and Properties of Ceramics, edited by M. Swain, Volume 11 of Materials Science and Technology - A Comprehensive Treatment, Chapter 3, VCH Verlagsgesellschaft, Weinheim (1994).

Google Scholar

[3] F. L. Riley: J. Am. Ceram. Soc., Vol. 83 (2000) p.245.

Google Scholar

[4] F. F. Lange: J. Ceram. Soc. Japan, Vol. 114 (2006) p.873.

Google Scholar

[5] S. Hampshire, K. H. Jack: Proc. Brit. Ceram. Soc., Vol. 31 (1981) p.37.

Google Scholar

[6] E. Y. Sun, P. F. Becher, K. P. Plucknett, C. -H. Hsueh, K. B. Alexander, S. B. Waters, K. Hirao, M. E. Brito: J. Am. Ceram. Soc., Vol. 81 (1998) p.2831.

Google Scholar

[7] R. L. Satet, M. J. Hoffmann, R. M. Cannon: Mater. Sci. Eng. A, Vol. 422 (2006) p.66.

Google Scholar

[8] P. F. Becher, N. Shibata, G. S. Painter, F. Averill, K. van Benthem, H. -T. Lin, S. B. Waters: J. Am. Ceram. Soc., Vol. 93 (2010) p.570.

Google Scholar

[9] W. D. Kingery: J. Appl. Phys., Vol. 30 (1959) p.301.

Google Scholar

[10] S. Hampshire, M. J. Pomeroy: Int. J. Appl. Ceram. Tech., Vol. 5 (2008) p.155.

Google Scholar

[11] D.R. Clarke: J. Am. Ceram. Soc., Vol. 70 (1987) p.15.

Google Scholar

[12] C.M. Wang, W.Q. Pan, M.J. Hoffmann, R.M. Cannon, M. Rühle: J. Am. Ceram. Soc., Vol. 79 (1996) p.788.

Google Scholar

[13] Y. Tajima, Mater. Res. Soc. Symp. Proc., Vol. 287 (1993) p.189.

Google Scholar

[14] P. F. Becher, E. Y. Sun, K. P. Plucknett, K. B. Alexander, C. -H. Hsueh, H. -T. Lin, S. B. Waters, C. G. Westmoreland, E. -S. Kang, K. Hirao, M. E. Brito: J. Am. Ceram. Soc., Vol. 81 (1998) p.2821.

Google Scholar

[15] H. J. Kleebe, G. Pezzotti, G. Ziegler: J. Am. Ceram. Soc., Vol. 82 (1999) p.1857.

Google Scholar

[16] S. M. Wiederhorn, R. F. Krause, F. Lofaj, U. Taffner: Key Eng. Mater., Vol. 287 (2005) p.381.

Google Scholar

[17] S. Hampshire, R.A.L. Drew and K.H. Jack: Phys. Chem. Glass., Vol. 26 (1985) p.182.

Google Scholar

[18] S. Hampshire, E. Nestor, R. Flynn, J.L. Besson, T. Rouxel, H. Lemercier, P. Goursat, M. Sabai, D.P. Thompson and K. Liddell: J. Eur. Ceram. Soc., Vol. 14 (1994) p.261.

DOI: 10.1016/0955-2219(94)90095-7

Google Scholar

[19] R. Ramesh, E. Nestor, M. J. Pomeroy, S. Hampshire: J. Eur. Ceram. Soc., Vol. 17 (1997) p. (1933).

Google Scholar

[20] E. Y. Sun, P. F. Becher, S-L. Hwang, S. B. Waters, G. M. Pharr, T. Y. Tsui: J. Non-Cryst. Solids, Vol. 208 (1996) p.162.

Google Scholar

[21] E. Dolekcekic, M.J. Pomeroy, S. Hampshire: Key Eng. Mater., Vols. 264-268 (2004) p. (1927).

Google Scholar

[22] S. Hampshire, M.J. Pomeroy: J. Ceram. Soc. Jpn., Vol. 116 (2008) p.755.

Google Scholar

[23] S. Hampshire, M.J. Pomeroy: J. Non-Cryst. Solids, Vol. 344 (2004) p.1.

Google Scholar

[24] P.F. Becher, M. Ferber: J. Am. Ceram. Soc., Vol. 87 (2004) p.1274.

Google Scholar

[25] F. Lofaj, F. Dorčáková, M. J. Hoffmann: J. Mater. Sci., Vol. 40 (2005) p.47.

Google Scholar

[26] T. Rouxel: J. Am. Ceram. Soc., Vol. 90 (2007) p.3019.

Google Scholar

[27] T. Rouxel, N. Dely, J. -C. Sangleboeuf, S. Deriano, J. Rocherulle, S. Hampshire: J. Am. Ceram. Soc., Vol. 88 (2005) p.889.

Google Scholar

[28] E. Y. Sun, P. F. Becher, C. -H. Hsueh, G. S. Painter, S. B. Waters, S. -L. Hwang, M. J. Hoffmann: Acta Mater., Vol. 47 (1999) p.2777.

Google Scholar

[29] P.F. Becher, G.S. Painter, N. Shibata, R.L. Satet, M.J. Hoffmann, S.J. Pennycook: Mater. Sci. Eng. A, Vol. 422 (2006) p.85.

Google Scholar

[30] N. Shibata, S. J. Pennycook, T. R. Gosnell, G. S. Painter, W. A. Shelton, P. F. Becher: Nature, Vol. 428 (2004) p.730.

Google Scholar

[31] W. E. Luecke, S. M. Widerhorn, B. J. Hockey, R. F. Krause, G. G. Long: J. Am. Ceram. Soc., Vol. 78 (1995) p. (2085).

Google Scholar