Cathodoluminescence of ZnO Crystals Prepared via Electric Current Heating Method Using Zn Wire

Article Preview

Abstract:

Zn wire was used as starting material in the fabrication of ZnO crystals in which a glass substrate was placed above the wire to grow ZnO crystals. The wire was heated by electric current in air. When the wire broke because of Joule heating, smoke arose from the wire and ZnO crystals were observed on the broken point, in the vicinity of the broken point, and on the glass substrate. The morphology and cathodoluminescence of the crystals were investigated. The crystals on the wire were 0.2–5 μm in size. The peak intensity ratio of ultraviolet (UV) emission to green emission increased with decreasing crystal size. The crystals on the substrate were tetrapod-like; the length and diameter of the tetrapod legs were 100–500 nm and 10–30 nm, respectively. The tetrapod-like nanocrystals produced only UV emissions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-264

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Srikant and D.R. Clarke: J. Appl. Phys. Vol. 83 (1998), p.5447.

Google Scholar

[2] K.K. Kim, J.H. Song, H.J. Jung and W.K. Choi: J. Appl. Phys. Vol. 87 (2000), p.3573.

Google Scholar

[3] B.D. Yao, Y.F. Chan and N. Wang: Appl. Phys. Lett. Vol. 81 (2002), p.757.

Google Scholar

[4] W.I. Park, D.H. Kim, S.W. Jung and G.C. Yi: Appl. Phys. Lett. Vol. 80 (2002), p.4232.

Google Scholar

[5] M. Kawasaki, A. Ohtomo, I. Ohkubo, H. Koinuma, Z.K. Tang, P. Yu, G.K.L. Wong, B.P. Zhang and Y. Segawa: Mater. Sci. Eng. Vol. 24 (1998), p.1354.

Google Scholar

[6] M. Kawakami, A.B. Hartanto, Y. Nakata and T. Okada: Jpn. J. Appl. Phys. Vol. 42 (2003), p.33.

Google Scholar

[7] S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong and J.B. Ketterson: Appl. Phys. Lett. Vol. 75 (1999), p.2761.

Google Scholar

[8] D. Nezaki, S. Takano, Y. Kuroki, Y. Kurihara, T. Okamoto and M. Takata: Trans. MRS-J. Vol. 25 (2000), p.205.

Google Scholar

[9] D. Nezaki, T. Okamoto and M. Takata: Key Eng. Mater. Vol. 241 (2002), p.228.

Google Scholar

[10] D. Nezaki, M. Yasuda, T. Yasui and M. Takata: Solid State Ionics Vol. 172 (2004), p.353.

DOI: 10.1016/j.ssi.2004.02.069

Google Scholar

[11] H. Yamasaki, K. Minato, D. Nezaki, T. Okamoto, A. Kawamoto and M. Takata: Solid State Ionics Vol. 172 (2004), p.349.

DOI: 10.1016/j.ssi.2004.02.050

Google Scholar

[12] X. Liu, X. Wu, H. Cao and R.P.H. Chang: J. Appl. Phys. Vol. 95 (2004), p.3141.

Google Scholar

[13] N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton and G. Cantwell: Appl. Phys. Lett. Vol. 81 (2002), p.622.

Google Scholar

[14] D.M. Bagnall, Y.F. Shen, Z. Zhu, T. Goto and T. Yao: J. Cryst. Growth Vol. 184-185 (1998), p.605.

Google Scholar

[15] Y. Fujiki and M. Mitomo: Whisker (Sangyo tosho, Japan 1993) p.2.

Google Scholar