Modeling Radiation Effects on the Fracture Process in Simplified Nuclear Glass

Article Preview

Abstract:

Experimentally, the evolution of several mechanic properties (hardness, density, Young’s modulus, fracture toughness) is observed in nuclear glasses under irradiation. In this work, classical molecular dynamics calculations are performed to better understand fracture mechanisms in simplified nuclear glasses at atomistic scale and to explain the radiation effects. Fractures are simulated in more disordered glasses, representative of irradiated samples, to reveal radiation effects. We observe a lower elastic limit and a greater plasticity in the irradiated glass that can explain its larger fracture toughness.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 488-489)

Pages:

154-157

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Peuget, J.N. Cachia, C. Jégou, X. Deschanels, D. Roudil, V. Broudic, J.M. Delaye, J.M. Bart, J. Nucl. Mater. 354 (2006), p.1.

DOI: 10.1016/j.jnucmat.2006.01.021

Google Scholar

[2] Y. Inagaki, H. Furuya, Y. Ono, K. Idemitsu, T. Banba, S. Matsumoto, S. Muraoka, Mater. Res. Soc. Symp. Proc. 294 (1993), p.191.

Google Scholar

[3] H. Matzke, in: CEA/Varlhô Summer Session Proceedings on Glass: Scientific Research for High Performance Containment, Méjannes-Le-Clap (1997), p.149.

Google Scholar

[4] C.L. Rountree, R.K. Kalia, E. Lidorokis, A. Nakano, L. Van Brutzel, P. Vashishta, Annu. Rev. Mater. Res. 32 (2002) p.377.

DOI: 10.1146/annurev.matsci.32.111201.142017

Google Scholar

[5] A. Pedone, J. Phys. Chem. C 113 (2009) p.20773.

Google Scholar

[6] J. de Bonfils, S. Peuget, G. Panczer, D. de Ligny, S. Henry, P. -Y. Noel, A. Chenet, B. Champagnon, J. Non-Cryst. Solids, 356 (2010) p.388.

DOI: 10.1016/j.jnoncrysol.2009.11.030

Google Scholar

[7] L.H. Kieu, J.M. Delaye, L. Cormier, C. Stolz, submitted to J. Non-Cryst. Solids.

Google Scholar

[8] G. Bureau, J. -M. Delaye, S. Peuget, G. Calas, Nucl. Instr. Meth. Phys. Res. B 266 (2008) 2707.

Google Scholar

[9] L. Van Brutzel, Ph.D. thesis, Université Paris VI (1999).

Google Scholar

[10] F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, C. Malière, Phys. Rev. Lett. 90 (2003), p.075504.

DOI: 10.1103/physrevlett.90.075504

Google Scholar

[11] S.J.V. Frankland, V.M. Harik, G.M. Odegard, D.W. Brenner, T.S. Gates, Compos. Sci. Technol. 63 (2003) p.1655.

Google Scholar

[12] A. Adnan, C.T. Sun, H. Mahfuz, Compos. Sci. Technol. 67 (2007), p.348.

Google Scholar

[13] D. Stauffer, Introduction to Percolation Theory, Taylor & Francis, Washington, DC (1992).

Google Scholar

[14] C.L. Rountree, D. Bonamy, D. Dalmas, S. Prades, R.K. Kalia, C. Guillot, E. Bouchaud, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 51 (2010), p.127.

Google Scholar

[15] E. Bouchaud, J. Phys. Condens. Matter 9 (1997), p.4319.

Google Scholar

[16] C.L. Rountree, S. Prades, D. Bonamy, E. Bouchaud, R. Kalia, C. Guillot, J. Alloy. Compd. 434-435 (2007) p.60.

DOI: 10.1016/j.jallcom.2006.08.336

Google Scholar

[17] S. Prades, PhD thesis, Université Paris VI (2004).

Google Scholar