Explosion and Temperature Resistance of Underground Structures by Free Hexagons

Article Preview

Abstract:

It appears that sudden change of loading such as shock wave impinging on underground structures, which is mostly linked up with an extreme increase of temperature, causes immense disasters, which involve loss of human lives, heavy machine damage, long-lasting traffic troubles, decreasing of bearing capacity of the structural system, etc. A combination of shock wave due to both the elevated temperature accompanying explosion leads to cracking of the bearing system of underground openings, for example to cracking of concrete lining, i.e. to reduction of thickness of the bearing structures, etc. It has been previously proved that the free hexagon method serves for identifying the damage in the bearing system of underground structures very well. The dynamical influences have to be also emerged if extreme raise of temperature and explosion are involved in this problem; formulation is briefly mentioned and the results from numerical simulations are presented. It will be shown that the superheated vapor interacting with shock and temperature waves caused by the point charge inside of the underground open space may cause extensive occurrence of fissures on the surface exposed to the external loading envisaged.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 488-489)

Pages:

678-681

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Peskova and P.P. Prochazka: CTU Reports 1, Vol. 12, (2008), p.150.

Google Scholar

[2] P.P. Prochazka, M.V. Valek, S. Peskova: Study on spalling of extremely heated FRC by free hexagons. Key Eng. Mater. 452-453: (2011), pp.693-696.

DOI: 10.4028/www.scientific.net/kem.452-453.693

Google Scholar

[3] P. Prochazka, A. Kravtsov: Shock Waves as a Main Destructive Dynamical Loading of Structures. Czech Technical University in Prague (2010), p.132.

Google Scholar

[4] P.P. Prochazka: Application of discrete element methods to fracture mechanics of rock bursts. Engineering Fracture Mechanics 71 (2004) p.601–618.

DOI: 10.1016/s0013-7944(03)00029-8

Google Scholar

[5] G.W. Ma, J.C. Li, J. Zhao: Three-phase medium model for filled rock joint and interaction with stress waves. Int. J. Numer. Anal. Meth. in Geomech. 35(1) (2011) pp.97-110.

DOI: 10.1002/nag.941

Google Scholar