Development of Bevel Gear Motion Transmission Graphs with FEM

Article Preview

Abstract:

The article presents the course of the calculations and conclusions from the analysis of a bevel gear motion transmission using FEM. The motion transmission graphs show the angular variation of the driven gear in the case of a driving pinion that rotates with a constant angular velocity. In contrary to the classical Tooth Contact Analysis, which is carried out on stiff bodies, FEM analysis includes deformations of mating gears. Thus, it brings more realistic information on dynamic behavior and noise characteristic of analyzed gear drive.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-89

Citation:

Online since:

September 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bąk R., Burczyński T. (2001). Strength of materials with elements of computer approach. Warsaw, Poland: Wydawnictwa Naukowo-Techniczne.

Google Scholar

[2] Budzik G., Pacana J. (2008). Analysis of MES solution correctness depending on type and number of finite elements used. Kosiče: Acta Mechanica Slovaca, 3-A/2008, PRO-TECH-MA Ročnik 12.

Google Scholar

[3] Gosselin C. (1999). Computation and measurement of the kinematical motion error of actual hypoid gears under load. Paris: 4th World Congress on Gearing and Power Transmission.

Google Scholar

[4] Handschuh R.F., Bibel G.D. (1999). Experimental and Analytical Study of Aerospace Spiral Bevel Gear Tooth Fillet Stresses. Transactions of the ASME, Journal of Mechanical Design, 121.

DOI: 10.1115/1.2829500

Google Scholar

[5] Kawalec A., Wiktor J. (2001). Computer simulation of spur gear generation - part of general CAE system for gear design and manufacturing. Warsaw: 2nd International Conference on Advances in Production Engineering.

Google Scholar

[6] Kleiber M. (1995). Computer methods of solids mechanics. Warsaw: PWN

Google Scholar

[7] Litvin F.L. (1968, 1994). Theory of Gearing. Moscow: Nauka, second edition 1968, also, Englewood Cliffs, NJ: Prentice-Hill, (1994)

Google Scholar

[8] Marciniec A. (2001). Analysis of engagement and cooperation trace of bevel gears with circular-arched tooth line. Scientific Bulletins of Rzeszów Uniwersity of Technology, 188, Mechanics, 57.

Google Scholar

[9] Marciniec A. (2002). Synthesis and analysis of engagement of bevel gears with circular-arched tooth line. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej.

Google Scholar

[10] Pacana J., Budzik G., Kudasik T. (2008). Defining bending stress in gears with finite elements method. Kosiče: Acta Mechanica Slovaca 3-A/2008, PRO-TECH-MA Ročnik 12.

Google Scholar

[11] Rusiński E., Czmochowski J., Smolnicki T. (2000). Advanced method of finite elements in load-bearing structures. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.

Google Scholar

[12] Sałaciński T. (2003). The basis of shaping and cooperation simulation of bevel gears teeth surface. Warsaw: Oficyna Wydawnicza Politechniki Warszawskiej, Mechanika, 200.

Google Scholar

[13] Skawiński P., Siemiński P. (2008). Study of cooperation trace and generation of moving diagrams of spiral bevel gears in CAD software. Scientific Bulletins of Rzeszów Uniwersity of Technology, 259, Mechanics, 75.

Google Scholar

[14] Weck M., Stadtfeld H. (1984). Optimization of spiral bevel gears. Industrie Anzeiger, 48/1984.

Google Scholar

[15] Wójcik Z. (2004). Bevel gears in Gleason system, construction and technology. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej.

Google Scholar