New Concepts for Cooling of Extrusion Dies Manufactured by Rapid Tooling

Article Preview

Abstract:

To prevent local overheating of the workpiece material in hot aluminum extrusion the influence of die cooling was investigated. Numerical simulations of extrusion revealed an advantage of the die bearing cooling, which can be accomplished by locating the cooling channels close to the die/bearing surface. Since the fabrication of especially geometric complex cooling channels located near the die surface is not possible by conventional manufacturing technologies, the technology of rapid tooling was introduced into hot aluminum extrusion and experimentally tested. Cooling channels near to the bearings show promising results allowing extensions of extrusion limits, especially the extrusion speed and therefore productivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-232

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Akeret: Die Produktivität beim Strangpressen von Aluminium-Werkstoffen – Einfluss von Werkstoff und Verfahren, Zeitschrift für Metallkunde, Vol. 62 (1971) 6, pp.451-456.

DOI: 10.1515/ijmr-1971-620601

Google Scholar

[2] A.K. Das: Special Features of Process Defects in Aluminium Alloy Extrusions, Proceedings of the Fourth Int. Extrusion Technology Seminar, April 11-14, Chicago, 1988, Vol. 2, pp.227-233.

Google Scholar

[3] O. Lohne: Simulation of Hot Tearing of Aluminium Alloys, Proceedings of the Fourth Int. Extrusion Technology Seminar, April 11-14, Chicago, 1988, Vol. 2, pp.303-308.

Google Scholar

[4] A.K. Biswas, B. Repgen: Isothermal and Isopressure Extrusion Results of Process Optimization in Various Extusion Plants, Proceedings of the Sixth Int. Aluminum Extrusion Technology Seminar, Chicago, Illinois, 1996, pp.37-43.

Google Scholar

[5] P.K. Saha: Aluminum Extrusion Technology, ASM Int., Materials Par, OH, 2000, pp.45-51.

Google Scholar

[6] J.C. Benedyk: The Evolution of the Smart Container: Achieving Isothermal Control in Extrusion, Light Metal Age, August 2008, pp.40-47.

Google Scholar

[7] R. Akeret: Das Verhalten der Strangpresse als Regelstrecke, Metall, 34 (1980) 8, pp.737-741.

Google Scholar

[8] M. Bauser, G. Sauer, K. Siegert: Strangpressen, Aluminium-Verlag, Düsseldorf, (2001).

Google Scholar

[9] R.J. Selines, F.D. Lauricella: Extrusion Cooling and Inerting Using Liquid Nitrogen, Proc. of the Third Int. Al. Extrusion Techn. Seminar, April 24-26, Atlanta, Georgia, 1984, pp.221-226.

Google Scholar

[10] T.J. Ward, J.F. Heffron: The Effects of Nitrogen and Liquid and Gaseous on Aluminum Extrusion Productivity, Proceedings of the Third Int. Aluminum Extrusion Technology Seminar, April 24-26, Atlanta, Georgia, 1984, pp.211-219.

DOI: 10.1007/bf03339208

Google Scholar

[11] H. Yamaguchi: Increase in Extrusion Speed and Effects on Hot Cracks and Metallurgical Structure of Hard Aluminium Extrusions, Proceedings of the Fifth Int. Aluminum Extrusion Technology Seminar, Chicago, 1992, pp.447-453.

Google Scholar

[12] Perfectionnement au filage à chaud des métaux, French Patent, FR 980 781, (1953).

Google Scholar

[13] M. Rossmann, R. Strigl: Verfahren zum Strangpressen bzw. Strangziehen, European Patent, EU 0 210 568 B1, (1994).

Google Scholar

[14] J. Busse, U. Thorwarth: INCAL – Höhere Produktivität beim Strangpressen von Aluminium Halbzeugen, Firmenschrift Messer Schweiz AG, Lenzburg, Schweiz, (2002).

Google Scholar

[15] M. Fortier, D. Lavoie, N. Parson, C. Jowett: The Use of Gaseous Nitrogen to Improve the Surface Finish of Dilute 6xxx Extrusions, Proceedings of the Ninth Int. Aluminum Extrusion Technology Seminar, 13-16 Mai, Orlando, Florida, (2008).

Google Scholar

[16] G. Scharf: Ein Beitrag zum Strangpressen mit gekühltem Werkzeug, Aluminium, Vol. 55 (1979) 3, pp.197-201.

Google Scholar

[17] W. Kortmann: Technologie der Strangpresswerkzeuge, S+C Märker GmbH, Lindlar, (2004).

Google Scholar

[18] R.J. Fiorentino, E.G. Jr. Smith: Rapid Extrusion of Hot-short-sensitive Alloys, US Patent 462234, (1984).

Google Scholar

[19] R.J. Fiorentino, E.G. Jr. Smith: Improved Cooled Dies for Increasing Aluminum Extrusion Productivity, Proceedings of the Fourth Int. Extrusion Technology Seminar, April 11-14, Chicago, 1988, Vol. 2, pp.79-82.

Google Scholar

[20] A. Gebhardt: Generative Fertigungsverfahren: Rapid Prototyping - Rapid Tooling - Rapid Manufacturing, Carl Hanser Verlag, München (2007).

DOI: 10.3139/9783446436527.005

Google Scholar

[21] G. Hoffmann: LaserCusing® - Neue innovative Möglichkeiten der Werkzeugtemperierung, Anwendungen und Beispiele aus der Praxis, In: Zäh, M.; Reinhart, G.: IWB Seminarberichte 85, 3-D Erfahrungsforum Innovation im Werkzeug und Formenbau, München, 30. -31. 05. 2007, pp.9-1.

DOI: 10.1002/9783527624225.ch25

Google Scholar

[22] W.Z. Misiolek, K.T. Winther, A.E. Prats, S.J. Rock: Rapid Prototyping of Extrusion Dies Using Layer-Based Techniques, J. of Materials Eng. and Performance, 8 (1999) 1, pp.23-30.

DOI: 10.1361/105994999770347124

Google Scholar

[23] B. ÓDonnchadha, A. Tansey: A note on rapid metal composite tooling by selective laser sintering, Journal of Materials Processing Technology, Vol. 153-154 (2004), pp.28-34.

DOI: 10.1016/j.jmatprotec.2004.04.034

Google Scholar