Cold Working Degree Determination in Low Carbon Steel with Barkhausen Noise Analysis

Article Preview

Abstract:

Mild steel is one of the most commonly used materials in both industry, construction and other commercial –less or more elaborated- applications, and therefore the need of the appliance of an efficient and precise non-destructive testing method is requisite and mandatory. Here we report the experimental study of one of the most significant properties of mild steel, that of hardness, that can substantially reveal important facts such as the grade of deformation and work-hardening of steel, with the use of Barkhausen Noise Analysis. We also studied how the magnetic and mechanical properties of this specific metallic material can be successfully correlated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

198-200

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Hristoforou, J. Opt. Adv. Mat., 4, (2002) 245-260.

Google Scholar

[2] K. Kosmas, C. Sargentis, D. Tsamakis, E. Hristoforou, J. Mat. Proc. Tech., 161, (2005) 359-362.

Google Scholar

[3] E. Hristoforou, R.E. Reilly, D. Niarchos, IEEE Trans. Magn., 29, (1993) 3171-3173, (1993).

DOI: 10.1109/20.281126

Google Scholar

[4] K. Kosmas, E. Hristoforou, International J. of App. Electr. and Mech., 25, (2007)319-324.

Google Scholar

[5] E. Hristoforou, Review Article, Meas. Sci. & Technol., 14, (2003) R15-R47.

Google Scholar

[6] E. Hristoforou, D. Niarchos, H. Chiriac, M. Neagu, Sens. & Actuators A, 92, (2001) 132-136.

Google Scholar

[7] E. Hristoforou, K. Kosmas, Int. J. of Appl. Electrom. and Mechanics, 25, (2007) 287-296.

Google Scholar

[8] E. Hristoforou and R.E. Reilly, J. Magn. Magn. Mat., 119, (1993) 247-253, (1993).

Google Scholar

[9] E. Hristoforou, K. Kosmas, M. Kollar, Journal of Electrical Engineering, 59, (2008) 90-93.

Google Scholar

[10] B. Augustyniak, L. Piotrowski, M. Chmielewski, K. Kosmas, E. Hristoforou, IEEE Trans. Magn., 46, (2010) 544-547.

DOI: 10.1109/tmag.2009.2033340

Google Scholar

[11] L. Piotrowski, B. Augustyniak, M. Chmielewski, E. Hristoforou, K. Kosmas, IEEE Trans. Magn., 46, (2010) 239-242.

DOI: 10.1109/tmag.2009.2034020

Google Scholar

[12] M. Küpferling, F. Fiorillo, V. Basso, G. Bertotti, P. Meilland, J. Mag. Mag. Mat., 320, (2008) 527-530.

Google Scholar

[13] T. Liu, H. Kikuchi, Y. Kamada, K. Ara, S. Kobayashi, S. Takahashi, 310, (2007) 989-991.

Google Scholar

[14] A. Dhar, L. Clapham, D. L. Atherton, NDT & E International, 34, (2001) 507-514.

Google Scholar

[15] D.S. Vlachos, C.A. Papadopoulos and J.N. Avaritsiotis, Sensors and Actuators B 44 (1997) 239.

Google Scholar

[16] D.S. Vlachos and C. Tsabaris, Nuclear Instruments and Methods in Physics Research, Section A Vol. 539, 414 (2005).

Google Scholar

[17] C.A. Papadopoulos, D.S. Vlachos and J.N. Avaritsiotis, Sensors and Actuators B 34 (1996) 524.

Google Scholar

[18] P.D. Skafidas, D.S. Vlachos and J.N. Avaritsiotis, Sensors and Actuators B 18-19 (1994) 724.

Google Scholar

[19] C. A. Papadopoulos, D.S. Vlachos and J.N. Avaritsiotis, Sensors and Actuators B 42 (1997) 95.

Google Scholar

[20] D.S. Vlachos, P.D. Skafidas and J.N. Avaritsiotis, Applied Physics Letters 63 (13) (1993) 1760.

Google Scholar