Cordless Position Sensor Based on the Magnetostrictive Delay Line Principle

Article Preview

Abstract:

In this paper a cordless position sensor based on the Magnetostrictive Delay Line principle is presented. The working principle and the response of the sensor to coaxial and parallel moving magnetic field are analyzed. The output is selected to be the differential voltage of pairs of successive search coils. The measurements suggest monotonic dependence of the output of the sensor with respect to the permanent magnet’s position.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-224

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Hristoforou, J. Opt. Adv. Mat., 4 (2002), pp.245-260.

Google Scholar

[2] E. Hristoforou, Meas. Sci. & Technol. 14 (2003), p. R15-R47.

Google Scholar

[3] E. Hristoforou, Sensors and Actuators A, 59 (1997), pp.183-191.

Google Scholar

[4] E. Hristoforou and D. Niarchos, Magn. Magn. Mat., 116 (1992), pp.177-188.

Google Scholar

[5] E. Hristoforou, R.E. Reilly and D. Niarchos, IEEE Trans. Magn., 29 (1993), pp.3171-3173.

DOI: 10.1109/20.281126

Google Scholar

[6] E. Hristoforou, R.E. Reilly, IEEE Trans. Mag., 30, (1994), pp.2728-2733.

Google Scholar

[7] P. Kemidis, T. Orfanidou and E. Hristoforou, J. Opt. Adv. Mat., 4 (2002), pp.347-352.

Google Scholar

[8] E. Hristoforou, P.D. Dimitropoulos and J. Petrou, Sensors and Actuators A, 132 (2006), pp.112-121.

Google Scholar

[9] E. Hristoforou: Sensor Letters, 7 (2009), pp.303-309.

Google Scholar

[10] E. Hristoforou and R.E. Reilly, J. Appl. Phys., 69 (1991), p.5008–10.

Google Scholar

[11] L. Kvarnsjo and G. Engdahl: IEEE Trans. Magn., 25 (1989), p.4195–7.

Google Scholar

[12] D.S. Vlachos, C.A. Papadopoulos and J.N. Avaritsiotis, Sensors and Actuators B 44 (1997) 239.

Google Scholar

[13] D.S. Vlachos and C. Tsabaris, Nuclear Instruments and Methods in Physics Research, Section A Vol. 539, 414 (2005).

Google Scholar

[14] C.A. Papadopoulos, D.S. Vlachos, J.N. Avaritsiotis, Sensors and Actuators B 34 (1996) 524.

Google Scholar

[15] P.D. Skafidas, D.S. Vlachos, J.N. Avaritsiotis, Sensors and Actuators B 18-19 (1994) 724.

Google Scholar

[16] C. A. Papadopoulos, D.S. Vlachos, J.N. Avaritsiotis, Sensors and Actuators B 42 (1997) 95.

Google Scholar

[17] D.S. Vlachos, P.D. Skafidas, J.N. Avaritsiotis, Applied Physics Letters 63 (13) (1993) 1760.

Google Scholar

[18] D.S. Vlachos and A.C. Xenoulis, Nanostructured Materials, Vol. 10, No 8 (1998) 1355.

Google Scholar

[19] D.S. Vlachos and T.E. Simos, Applied Numerical Analysis and Computational Mathematics, 1 No. 3, 540 (2004).

Google Scholar

[20] D.S. Vlachos, D.K. Fragoulis, J.N. Avaritsiotis, Sensors and Actuators B 43 (1998) 1.

Google Scholar

[21] P.D. Skafidas, D.S. Vlachos, J.N. Avaritsiotis, Sensors and Actuators B 21(2) (1994) 109.

Google Scholar

[22] D.S. Vlachos, C.A. Papadopoulos, J.N. Avaritsiotis, Sensors and Actuators B 25 (1-3) (1995) 883.

Google Scholar

[23] C. A. Papadopoulos, D.S. Vlachos, J.N. Avaritsiotis, Sensors and Materials, 9 (2) (1997) 75.

Google Scholar