Chemical Mechanical Polish of Potential New Barrier Material Ruthenium (Ru) in ULSI Copper Interconnects

Article Preview

Abstract:

Ruthenium (Ru) and ruthernium alloys may be utilized as new copper barrier materials in copper interconnects of ultra-large scale integration (ULSI), and chemical mechanical polish (CMP) can be applied in planarization for ULSI production. In this paper, CMP experiments were done on high purity Ru by using home-made slurry, the effect of oxidizer, complexing agent, polishing downforce, pH value, inhibitor species and inhibitor concentration on the material removal rate (MRR) was investigated. The results revealed that MRR can reach 8.7 nm/min under the following conditions: the main constituents in slurry were 1 wt.% SiO2, 1 wt.% (NH4)2S2O8, 1 wt.% tartaric acid and 3 mM imidazole, the pH value was 8.0, the down force was 2.5 psi (17.24 kPa); the roughness Ra was 7.6 nm under these conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

January 2012

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. J. Chang and C. M. Chieh: Thin Solid Films Vol. 335 (1998), p.146.

Google Scholar

[2] W. L. Yang, W. F. Wu, D. G. Liu and et al.: Solid-State Electron Vol. 45 (2001), p.149.

Google Scholar

[3] Q. Xie, X. P. Qu, J. J. Tan and et al.: Applied Surface Science Vol. 253(2006), p.1666.

Google Scholar

[4] J. P. Jacquemin, E. Labonne, C. Yalicheff and et al.: Microelectronic Engineering Vol. 82(2005), p.613.

Google Scholar

[5] C.C. Yang, T. Spooner, S. Ponoth and et al.: Proc. Int. Interconnect Tech. Conf. (2006), p.187.

Google Scholar

[6] D. C. Perng, J. B. Yeh and K. C. Hsu: Applied Surface Science Vol. 254 (2008), p.6059.

Google Scholar

[7] B. H. Choi, Y. H. Lim, J. H. Lee and et al.: Microelectronic Engineering Vol. 87 (2010), p.1391.

Google Scholar

[8] Q. Xie, Y. L. Jiang, J. Musschoot and et al.: Thin Solid Films Vol. 517 (2009), p.4689.

Google Scholar

[9] J. Li, H. S. Lu, Y. W. Wang and et al.: Microelectronic Engineering Vol. 88 (2011), p . 635.

Google Scholar

[10] D. C. Perng, K. C. Hsu, S. W. Tsai and et al.: Microelectronic Engineering Vol. 87 (2010), p.365.

Google Scholar

[11] V. R. K. Gorantla, S. B. Emery, S. Pandija and et al.: Materials Letters Vol. 59 (2005), p.690.

Google Scholar

[12] Y. N. Prasad and S. Ramanathan: Electrochimica Acta Vol. 52 (2007), p.6353.

Google Scholar

[13] J. Y. Jeong and W. G. Lee: Electrochemical and Solid-State Letters Vol. 6 (2003), p.45.

Google Scholar

[14] L. L. Chapelon, H. Chaabouni, G. Imbert and et al.: Microelectronic Engineering Vol. 85 (2008), p. (2098).

Google Scholar

[15] W. J. Lee and H. S. Park: Applied Surface Science Vol. 228 (2004), p.410.

Google Scholar

[16] I. K. Kim, Y. J. Kang, T. Y. Kwon and et al.: Electrochemical and Solid-State Letters Vol. 11(6) (2008), p.150.

Google Scholar

[17] K. Qin, B. Moudgil and C. W. Park: Thin Solid Films Vol. 446 (2004), p.277.

Google Scholar

[18] T. Du and V. Desal: Journal of Materials Science Letters Vol. 22 (2003), p.1623.

Google Scholar

[19] L. Wang, K. Zhang, Z. Song, and S. Feng: Applied Surface Science Vol. 253 (2007), p.4951.

Google Scholar