[1]
S.M. Ji, L.B. Zhang, J.L. Yuan. Method of monitoring wearing and breakage states of cutting tools based on Mahalanobis distance features. Journal of Materials Processing Technology Vol. 129 (2002), pp.114-117.
DOI: 10.1016/s0924-0136(02)00587-3
Google Scholar
[2]
H. Shao, H. l. Wang, X.M. Zhao. A cutting power model for tool wear monitoring in milling. International Journal of Machine Tool &Manufacture Vol. 44(2004), pp.1503-1509.
DOI: 10.1016/j.ijmachtools.2004.05.003
Google Scholar
[3]
Weiguo Gong, Weihong Li, T. Shiraksshi. An active method of monitoring tool wear states by impact diagnostic excitation. International Journal of Machine Tool &Manufacture Vol. 44 (2004), pp.847-854.
DOI: 10.1016/j.ijmachtools.2004.01.007
Google Scholar
[4]
Y.B. Guo, S.C. Ammula. Real-time acoustic emission monitoring for surface damage in hard machining. International Journal of Machine Tools & Manufacture Vol. 45 (2005), pp.1622-1627.
DOI: 10.1016/j.ijmachtools.2005.02.007
Google Scholar
[5]
J. Kopac, S. Sali. Tool wear monitoring during the turning process. Journal of Materials Processing Technology Vol. 113(2001), pp.312-316.
DOI: 10.1016/s0924-0136(01)00621-5
Google Scholar
[6]
Zafer Tekiner, Sezgin. Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel. Materials & Design Vol. 25(6) (2004), pp.507-513.
DOI: 10.1016/j.matdes.2003.12.011
Google Scholar
[7]
Ming-Chyuan Lu, Elijah Kannatey-Asibu, Jr. Analysis of Sound Signal Generation Due to Flank Wear in Turning. ASME Vol. 124(2002), pp.799-808.
DOI: 10.1115/1.1511177
Google Scholar
[8]
D.R. Salgado, F.J. Alonso. An approach based on current and sound signals for in-process tool wear monitoring. International Journal of Machine Tools&Manufacture Vol. 47(14) (2007), pp.2140-2152.
DOI: 10.1016/j.ijmachtools.2007.04.013
Google Scholar
[9]
F.J. Alonso, D.R. Salgado. Application of singular spectrum analysis of tool wear detection using sound signals. Journal of engineering manufacture Vol. 219(9) (2005), pp.703-710.
DOI: 10.1243/095440505x32634
Google Scholar
[10]
Ching-Han CHEN, Chia-Te CHU. A High Efficiency Feature Extraction Based Wavelet Transform for Speaker Recognition. Computer Symposium Vol. (2004), pp.15-17.
Google Scholar
[11]
Wang He ping, Pan Hong xia. The Application of Fusion Technology for Speaker Recognition. International Journal of Computer Science and Network Security Vol. 7(12) (2007), pp.300-303.
Google Scholar
[12]
Brett.R. Wildermoth, Kuldip k. Paliwal. USE OF VOICING AND PITCH INFORMATION FOR SPEAKER RECOGNITION. Speech Science and Technology Vol. (2000), pp.324-328.
Google Scholar
[13]
ZHAO Li. The speech signal processing. Mechanical industry press, Beijing. 2003. 4.
Google Scholar
[14]
YAN Hui, LI Ren-fa. Modeling and Simulation of Extract Cepstrum Features of Speech Signal. Journal Of System Simulation Vol. 17(7) (2005), pp.1774-1778.
Google Scholar
[15]
WANG Bin-xi, QU Dan, PENG Xuan. The basis of practical speech recognition. National Defense Industry Press, Beijing. (2005).
Google Scholar