Precipitable Water Vapor Retrieval Using Neural Network from Infrared Hyperspectral Soundings

Article Preview

Abstract:

A neural network (NN) based algorithm for retrieval of precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) observations is proposed. An exact radial basis function (RBF) network is selected, in which the at-sensor brightness temperatures are the input variables, and PWV is the output variable. The training data sets for the RBF network are mainly simulated from the fast radiative transfer model (Community Radiative Transfer Model, CRTM) and the latest global assimilation data. The algorithm is validated by retrieving the PWV over west area in China using AIRS data. Compared with the AIRS PWV products, the RMSE of the PWV retrieved by our algorithm is 0.67 g/cm2, and a comparison between the retrieved PWV and radiosonde data is carried out. The result suggests that the RBF neural network based algorithm is applicable and feasible in actual conditions. Furthermore, spatial resolution of water vapor derived by RBF neural network is superior as compared to that of AIRS-L 2 standard product. Finally a PCA scheme is used for the preliminary investigation of the compression of AIRS high dimension observations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

390-396

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Anthony, D. Genio, The dust settles on water vapor feedback, Science, vol. 296, no. 5568, pp.665-666, 26 Apirl (2002).

DOI: 10.1126/science.1071400

Google Scholar

[2] A. Raval, V. Ramanathan, Observational determination of the greenhouse effect, Nature, vol. 342, pp.758-761, 14 Dec. (1989).

DOI: 10.1038/342758a0

Google Scholar

[3] S. Akatsuka, W. Takeuchi, H. Sawada: Estimation of precipitable water distribution over northeast Asia using NOAA AVHRR. Asia Conference on Remote Sensing 2008, Colombo, Sri Lanka, (2008).

Google Scholar

[4] W. Wang, X. Sun, R. Zhang, Z. Li, Z. Zhu, H. Su, Multi-layer perceptron neural network based algorithm for estimating precipitable water vapor from MODIS NIR data, Int. J. Remote Sensing, vol. 27, pp.617-627, (2006).

DOI: 10.1080/01431160500227706

Google Scholar

[5] J.A. Sobrino, J. EI Kharraz, Z.L. Li, Surface temperature and water vapor retrieval from AIRS data, Int. J. Remote Sensing, vol. 24, pp.5161-5182, (2003).

DOI: 10.1080/0143116031000102502

Google Scholar

[6] N. Chrysoulakis, Y. Kamarianakis, L. Xu, Z. Mitraka, J. Ding, Combined use of AIRS, AVHRR and radiosonde data for the estimation of spatio-temporal distribution of precipitable water, J. Geophys. Res., vol. 113, D05, 101, (2008).

DOI: 10.1029/2007jd009255

Google Scholar

[7] M. Chahine, H. Aumann, M. Goldberd, L. McMillin, P. Rosenkranz, D. Staelin, L. Strow, J. Susskind, AIRS Algorithm Theoretical Basis Document, AIRS-Team Retrieval for Core Products and Geophysical Parameters Level 2 (version 2. 2), Availabel from: < http: / eospso. gsfc. nasa. gov/eos_homepage/for_scientists/atbd/docs/AIRS/atbd-airs-L2. pdf>, pp.59-154, (2001).

DOI: 10.1109/tgrs.2002.808356

Google Scholar

[8] M.G. Divakarla, C.D. Barnet, M.D. Goldberg, L.M. McMillin, E. Maddy, W. Wolf, L. Zhou, X. Liu., Validation of atmospheric infrared sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts, J. Geophys. Res., vol. 111, D09S15, (2006).

DOI: 10.1029/2005jd006116

Google Scholar

[9] J. Susskinda, R. Atlasa, C. Barnetb, J. Blaisdellc, et al., Current results from AIRS/AMSUA/HSB, Proceedings of Thirteenth International TOVS Study Conference, (2003).

Google Scholar

[10] D.C. Tobin, H.E. Revercomb, R.O. Knuteson, B.M. Lesht, et al., Atmospheric radiation measurement site atmospheric state best estimates for atmospheric infrared sounder temperature and water vapor retrieval validation, J. Geophys. Res., vol. 111, D09S14, (2006).

DOI: 10.1029/2005jd006103

Google Scholar

[11] C. Otlle, M. Stoll, Effect of atmospheric absorption and surface emissivity on the determination of land temperature from infrared satellite data, Int. J. Remote Sensing, vol. 14, pp.2025-2037, (1993).

DOI: 10.1080/01431169308954018

Google Scholar

[12] S. Hsu, T. Masters, M. Olson, M. Tenorio, T. Grogan, Comparavtive analysis of five neural networks models, Remote Sens. Rev., vol. 6, pp.319-329, (1992).

DOI: 10.1080/02757259209532159

Google Scholar

[13] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw., vol. 2, pp.359-366, (1989).

DOI: 10.1016/0893-6080(89)90020-8

Google Scholar

[14] J. Park and I. Sandberg, Universal approximation using radial-basis-function networks, Neural Computation, vol. 3, p.246–257, (1991).

DOI: 10.1162/neco.1991.3.2.246

Google Scholar

[15] E. E Borbas, S.W. Seemann, University of Wisconsin-Madison, Nov. (2005).

Google Scholar

[16] Aires, F., W. B. Rossow, N. A. Scott, and A. Chedin, Remote sensing from the infrared atmospheric sounding interferometer instrument: 1. Compression, denoising, and first-guess retrieval algorithms, J. Geophys. Res., 107(D22), 4619, (2002).

DOI: 10.1029/2001jd000955

Google Scholar