Numerical Simulation of Open-Cell Aluminum Foams under Compression

Article Preview

Abstract:

The numerical simulation of the compression behavior of open-cell aluminum foams is discussed as a way to extract material property information for laser forming simulation. A bilinear isotropic model was implemented for the alloy base material whereas a parametric approach was used to build the finite element model of the foam structure. Compression tests were performed on commercial foams with different pore size and density, and the results of lower density foam were used for the model validation. Numerical results show a good agreement with experimental data in terms of foam deformation under compression and required loads.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 504-506)

Pages:

1219-1224

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Quadrini, A. Guglielmotti, E.A. Squeo, V. Tagliaferri, Laser forming of open-cell aluminium foams, J. Mat. Proc. Tech. 210 (2010) 1517-1522.

DOI: 10.1016/j.jmatprotec.2010.04.010

Google Scholar

[2] A. Guglielmotti, F. Quadrini, E.A. Squeo, V. Tagliaferri, Laser bending of aluminum foam sandwich panels, Adv. Eng. Mater. 11 (2009) 902-906.

DOI: 10.1002/adem.200900111

Google Scholar

[3] L. Santo, A. Guglielmotti, F. Quadrini, Formability of Open-Cell Aluminum Foams by Laser, Proceedings of the ASME International Manufacturing Science and Engineering Conference (2010) MSEC2010-34282.

DOI: 10.1115/msec2010-34282

Google Scholar

[4] T. Fiedler, E. Solorzano, F. Garcia-Moreno, A. Ochsner, I.V. Belova, G.E. Murch, Computed tomography based finite element analysis of the thermal properties of cellular aluminium, Mat.-wiss. u. Werkstofftech. 40 (2009) 139-143.

DOI: 10.1002/mawe.200900419

Google Scholar

[5] C. Veyhl, I.V. Belova, G.E. Murch, T. Fiedler, Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography, Mat. Sci. Eng. A 528 (2011) 4550-4555.

DOI: 10.1016/j.msea.2011.02.031

Google Scholar

[6] N. Michailidis, F. Stergioudi, H. Omar, D. Papadopoulos, D.N. Tsipas, Experimental and FEM analysis of the material response of porous metals imposed to mechanical loading, Colloid. Surface. A 382 (2011) 124-131.

DOI: 10.1016/j.colsurfa.2010.12.017

Google Scholar

[7] I.C. Konstantinidis, S.A. Tsipas, Symmetry effects and their influence on the mechanical behavior of open and closed cell Al foams, Materi. . Design 31 (2010) 4490-4495.

DOI: 10.1016/j.matdes.2010.04.039

Google Scholar

[8] Y. Takahashi, D. Okumura, N. Ohno, Yield and buckling behaviour of Kelvin open-cell foams subjected to uniaxial compression, Int. J. Mec. Sci. 52 (2010) 377-385.

DOI: 10.1016/j.ijmecsci.2009.10.009

Google Scholar

[9] W.Y. Jang, S. Kyriakides, A.M. Kraynik, On the compressive strength of open-cell metal foams with Kelvin and random cell structures, Int. J. Solids and Struct. 47 (2010) 2872-2883.

DOI: 10.1016/j.ijsolstr.2010.06.014

Google Scholar

[10] M. De Giorgi, A. Carofalo, V. Dattoma, R. Nobile, F. Palano, Aluminium foams structural modelling, Comput. Struct. 88 (2010) 25-35.

DOI: 10.1016/j.compstruc.2009.06.005

Google Scholar