Experimental and Numerical Determination of Cutting Forces and Temperatures in Gear Hobbing

Article Preview

Abstract:

Hobbing is one of the most productive methods for manufacturing external gears. According to the requirements of green manufacturing, the lubrication in gear hobbing has to be reduced with the final aim of dry machining. Influences due to thermal aspects during machining have to be considered, especially in hobbing of large modules or ring gears, because in this case, hobbing could be the last step in the process chain. Within the priority program (SPP) “Modeling, Simulation and Compensation of Thermal Effects for Complex Machining Processes”, founded by the DFG, special emphasis is laid on the thermally caused geometrical deviation in dry cutting. To predict the heat flux, which leads to thermal expansions and geometrical deviations of the gear, a validated model for forces and temperatures is necessary. The validation of single generation positions and chips is focused in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 504-506)

Pages:

1275-1280

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Sulzer, Leistungssteigerung bei der Zylinderadherstellung durch systematische Erfassung der Zerspankinematik, Dissertation, RWTH Aachen, (1973)

Google Scholar

[2] K. Joppa, Leistungssteigerung beim Wälzfräsen mit Schnellarbeitsstahl durch Analyse, Beurteilung und Beeinflussung des Zerspanprozesses, Dissertation, RWTH Aachen, (1977)

Google Scholar

[3] K.-D. Bouzakis, O. Friderikos, I. Tsiafis, FEM-supported simulation of chip formation and flow in gear hobbing of spur and helical gears: CIRP Journal of Manufacturing Science and technology, 1 (2008) 18-26

DOI: 10.1016/j.cirpj.2008.06.004

Google Scholar

[4] A. Antoniadis , N. Vidakis and N. Bilalis, FEM Modeling Simulation of Gear Hobbing and Failure Types of Cutting Materials: Journal of Material Science and Engineering 124/4 (2002) 784-791

DOI: 10.1115/1.1511172

Google Scholar

[5] M. Hipke, Wälzfräsen mit pulvermetallurgisch hergestelltem Schnellarbeitsstahl, Dissertation, Universität Magdeburg, (2011)

Google Scholar

[6] O. Winkel, Steigerung der Leistungsfähigkeit von Hartmetallfräsern durch eine Optimierte Werkzeuggestaltung, Dissertation, RWTH Aachen, (2004)

Google Scholar

[7] Meyer, L.W., Halle, T., Herzig, N., Krüger, L., Razorenov, S.V., Experimental investigations and modelling of strain rate and temperature effects on the flow behaviour of 1045 steel, Proc. DYMAT 2006, J. Phys. IV France 134 (2006) 75-80

DOI: 10.1051/jp4:2006134013

Google Scholar