Friction Based Solid State Welding Processes

Article Preview

Abstract:

In the last decade the industrial use of solid state welding processes based on frictional forces work decaying into heat is continuously increasing due to their strong advantages with respect to traditional fusion techniques. Several advances have been proposed by the scientific community regarding process mechanics, material flow and also the computer aided engineering of the operation with the aim to maximize the mechanical performances of the welded joints. In the paper Friction Stir Welding (FSW) and Linear Friction Welding (LFW) operations are considered and a review of the most relevant research issues and results is provided.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 504-506)

Pages:

3-14

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.S. Mishra, Z.Y. Ma, Friction Stir Welding and Processing, Mat. Sci. and Eng. R50 (2005) 1-78.

Google Scholar

[2] A. Vairis, M. Frost, High frequency linear friction welding of a titanium alloy, Wear 217 (1998) 117-131.

DOI: 10.1016/s0043-1648(98)00145-8

Google Scholar

[3] A. Vairis, M. Frost, On the extrusion stage of linear friction welding of Ti 6Al 4V, Mat. Sci. and Eng. A271 (1999) 477-484.

DOI: 10.1016/s0921-5093(99)00449-9

Google Scholar

[4] W. -Y. Li, T.J. Ma, S.Q. Yang, Q.Z. Xu, Y. Zhang, J.L. Li, H.L. Liao, Effect of friction time on flash shape and axial shortening of linear friction welded 45 steel, Mat. Letters 62 (2008) 293-296.

DOI: 10.1016/j.matlet.2007.05.037

Google Scholar

[5] C. Mary, M. Jahazi, Multi-scale analysis of IN-718 microstructure evolution during Linear Friction Welding, Advanced Eng. Mat. 10(6) (2008) 573-578.

DOI: 10.1002/adem.200700361

Google Scholar

[6] W. -Y. Li, T. Ma, Y. Zhang, Q. Xu, J. Li, S. Yang, H. Liao, Microstructure characterization and mechanical properties of linear fiction welded Ti-6Al-4V alloy, Advanced Eng. Mat. 10(1-2) (2008) 89-92.

DOI: 10.1002/adem.200700034

Google Scholar

[7] R. Bayinder, H. Ates, Comparison of the constructed control methods for a friction-welding machine, Mat. and Manufacturing Proc. 20 (2005) 131-146.

DOI: 10.1081/amp-200041826

Google Scholar

[8] A. Vairis, M. Frost, Design and commissioning of a Friction Welding Machine, Mat. and Manufacturing Proc. 21 (2006) 766-773.

DOI: 10.1080/03602550600728356

Google Scholar

[9] A. Vairis, M. Frost, Modelling the linear friction welding of titanium blocks, Mat. Sci. and Eng. A292 (2000) 8-17.

Google Scholar

[10] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith, C. J. Dawes, Friction stir butt welding, International Patent Application No. PCT/GB92/02203 (1991).

Google Scholar

[11] W. M. Thomas, K. I. Johnson, C. S. Wiesner, Friction stir welding-recent developments in tool and process technologies, Advanced Engineering Materials 5(7) (2003) 485-490.

DOI: 10.1002/adem.200300355

Google Scholar

[12] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction-stir welding - Process, weldment structure and properties, Progress in Materials Science 53(6) (2008) 980-1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[13] T. Ma., W. -Y. Li., Q. Xu, Y. Zhang, J. Li, S. Yang, H. Liao, Microstructure Evolution and Mechanical Properties of Linear Friction Welded 45 Steel Joint, Advanced Engineering Materials 9(8) (2007) 121-127.

DOI: 10.1002/adem.200700090

Google Scholar

[14] M. Karadge, M. Preuss, C. Lovellb, P. -J. Withers, S. Bray, S., Texture Development In Ti–6Al–4V Linear Friction Welds, Materials Science and Engineering A 459 (2007) 182–191.

DOI: 10.1016/j.msea.2006.12.095

Google Scholar

[15] M. Corzo, Y. Torres, M. Anglada, A. Mateo, Fracture Behaviour of Linear Friction Welds in Titanium Alloys, Anales de la Mecánica de Fractura 1 (2007) 75-80.

Google Scholar

[16] B. Lang, T. -C. Zhang, X. -H. Li, D. -L. Guo, Microstructural Evolution of a TC11 Titanium Alloy During Linear Friction Welding, J Mater Sci, 45 (2010) 6218–6224.

DOI: 10.1007/s10853-010-4716-9

Google Scholar

[17] T. Ma, T. Chen, W. -Y. Li, S. Wang, S. Yang, S., Formation Mechanism of Linear Friction Welded Ti–6Al–4V Alloy Joint Based on Microstructure Observation, Materials Characterization 62 (2011) 130–135.

DOI: 10.1016/j.matchar.2010.11.009

Google Scholar

[18] E. Dalgaard, P. Wanjara, J. Gholipour, X. Cao, J. -J. Jonas, Linear Friction Welding of a Near-B Titanium Alloy Acta Materialia 60(2) (2012) 770-780.

DOI: 10.1016/j.actamat.2011.04.037

Google Scholar

[19] I. Bhamji, M. Preuss, P. -L. Threadgill, R. -J. Moat, A. -C. Addison, M. -J. Peel, Linear Friction Welding of AISI 316L Stainless Steel Materials Science and Engineering A 528 (2010) 680–690.

DOI: 10.1016/j.msea.2010.09.043

Google Scholar

[20] W. -Y. Li, T. Ma, J. Li, Numerical Simulation of Linear Friction Welding of Titanium Alloy: Effects of Processing Parameters, Materials and Design 31(3) (2009) 1497-1507.

DOI: 10.1016/j.matdes.2009.08.023

Google Scholar

[21] L. Fratini, G. Buffa, D. La Spisa, Effect of process parameters in Linear Friction Welding Processes of Steels, Proc. 10th Int. Conf. Techn. Plast. (ICTP 2011) (2011) 746-751.

Google Scholar

[22] M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, Establishing relationship between the base metal properties and friction stir welding process parameters of cast aluminium alloys, Materials and Design 31 (2010) 4567–4576.

DOI: 10.1016/j.matdes.2010.03.040

Google Scholar

[23] H. Fujii, L. Cui, M. Maeda, K. Nogi, Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys, Mat. Sci. and Eng. A 419 (2006) 25–31.

DOI: 10.1016/j.msea.2005.11.045

Google Scholar

[24] P. Xue, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma, Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints, Materials Science and Engineering A 528 (2011) 4683–4689.

DOI: 10.1016/j.msea.2011.02.067

Google Scholar

[25] P. Xue, B.L. Xiao, D.R. Ni, Z.Y. Ma, Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds, Materials Science and Engineering A 527 (2010) 5723–5727.

DOI: 10.1016/j.msea.2010.05.061

Google Scholar

[26] A. Scialpi, M. De Giorgi, L.A.C. De Filippis, R. Nobile, F.W. Panella, Mechanical analysis of ultra-thin friction stir welding joined sheets with dissimilar and similar materials, Materials and Design 29 (2008) 928–936.

DOI: 10.1016/j.matdes.2007.04.006

Google Scholar

[27] P. Cavaliere, F. Panella, Effect of tool position on the fatigue properties of dissimilar 2024-7075 sheets joined by friction stir welding, Journal of materials processing technology 2 0 6 ( 2 0 0 8 ) 249–255.

DOI: 10.1016/j.jmatprotec.2007.12.036

Google Scholar

[28] L. Zhang, S. Ji, G. Luan, C. Dong, L. Fu, Friction Stir Welding of Al Alloy Thin Plate by Rotational Tool without Pin, J. Mater. Sci. Technol., 2011, 27(7), 647-652.

DOI: 10.1016/s1005-0302(11)60120-5

Google Scholar

[29] P. Cavaliere, R. Nobile, F.W. Panella, A. Squillace, Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding, International Journal of Machine Tools & Manufacture 46 (2006) 588–594.

DOI: 10.1016/j.ijmachtools.2005.07.010

Google Scholar

[30] S. -A. Khodir, T. Shibayanagi, Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys, Materials Science and Engineering B 148 (2008) 82–87.

DOI: 10.1016/j.mseb.2007.09.024

Google Scholar

[31] S. Di, X. Yang, G. Luan, B. Jian, Comparative study on fatigue properties between AA2024-T4 friction stir welds and base materials, Materials Science and Engineering A 435–436 (2006) 389–395.

DOI: 10.1016/j.msea.2006.07.009

Google Scholar

[32] H. Aydın, A. Bayram, A. Uguz, K. -S. Akay, Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state, Materials and Design 30 (2009) 2211–2221.

DOI: 10.1016/j.matdes.2008.08.034

Google Scholar

[33] N. Shanmuga Sundaram, N. Murugan, Tensile behavior of dissimilar friction stir welded joints of aluminium alloys, Materials and Design 31 (2010) 4184–4193.

DOI: 10.1016/j.matdes.2010.04.035

Google Scholar

[34] A.A.M. da Silva, E. Arruti, G. Janeiro, E. Aldanondo, P. Alvarez, A. Echeverria, Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds, Materials and Design 32 (2011) 2021–(2027).

DOI: 10.1016/j.matdes.2010.11.059

Google Scholar

[35] L. Hui-jie, Z. Hui-jie, H. Yong-xian, Y. Lei, Mechanical properties of underwater friction stir welded 2219 aluminum alloy, Trans. Nonferrous Met. Soc. China (2010) 1387-1391.

DOI: 10.1016/s1003-6326(09)60309-5

Google Scholar

[36] H.J. Zhang, H.J. Liu, L. Yu, Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints, Materials and Design 32 (2011) 4402–4407.

DOI: 10.1016/j.matdes.2011.03.073

Google Scholar

[37] W. Xu, J. Liu, G. Luan, C. Dong, Microstructure and mechanical properties of friction stir welded joints in 2219-T6 aluminum alloy, Materials and Design 30 (2009) 3460–34.

DOI: 10.1016/j.matdes.2009.03.018

Google Scholar

[38] S. Malarvizhi, V. Balasubramanian, Effect of welding processes on AA2219 aluminium alloy joint properties, Trans. Nonferrous Met. Soc. China 21 (2011) 962-973.

DOI: 10.1016/s1003-6326(11)60808-x

Google Scholar

[39] S. Kainuma, H. Katsuki, I. Iwai, M. Kumagai, Evaluation of fatigue strength of friction stir butt-welded aluminum alloy joints inclined to applied cyclic stress, International Journal of Fatigue 30 (2008) 870–876.

DOI: 10.1016/j.ijfatigue.2007.06.007

Google Scholar

[40] H. Uzun, C. Dalle Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel, Materials and Design 26 (2005) 41–46.

DOI: 10.1016/j.matdes.2004.04.002

Google Scholar

[41] M. Di Paola, A. Falchero, M. Cabibbo, E. Evangelista, E. Meccia, S. Spigarelli, Mechanical and microstructural characterisation of an aluminum friction stir welded butt joint, Metallurgical Science and Technology 20(1) (2002) 18-21.

DOI: 10.1016/j.msea.2007.01.022

Google Scholar

[42] M. Cabibbo, H.J. McQueen, E. Evangelista, S. Spigarelli, M. Di Paola, A. Falchero, Microstructure and mechanical property studies of AA6056 friction stir welded plate, Materials Science and Engineering A 460–461 (2007) 86–94.

DOI: 10.1016/j.msea.2007.01.022

Google Scholar

[43] P.M.G.P. Moreira, T. Santos, S.M.O. Tavares, V. Richter-Trummer, P. Vilaça, P.M.S.T. de Castro, Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6, Materials and Design 30 (2009) 180–187.

DOI: 10.1016/j.matdes.2008.04.042

Google Scholar

[44] K. Elangovana, V. Balasubramanian, Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints, Material characterisation 59 (2008) 1168 – 1177.

DOI: 10.1016/j.matchar.2007.09.006

Google Scholar

[45] S.R. Ren, Z.Y. Ma, L.Q. Chen, Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al–Mg–Si alloy, Scripta Materialia 56 (2007) 69–72.

DOI: 10.1016/j.scriptamat.2006.08.054

Google Scholar

[46] X. -G. Chen, M. da Silva, P. Gougeon, L. St-Georges, Microstructure and mechanical properties of friction stir welded AA6063–B4C metal matrix composites, Materials Science and Engineering A 518 (2009) 174–184.

DOI: 10.1016/j.msea.2009.04.052

Google Scholar

[47] P. Cavaliere, A. De Santis, F. Panella, A. Squillace, Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding, Materials and Design 30 (2009) 609–616.

DOI: 10.1016/j.matdes.2008.05.044

Google Scholar

[48] L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol. %Al2O3p composite, Composites Science and Technology 67 (2007) 605–615.

DOI: 10.1016/j.compscitech.2006.07.029

Google Scholar

[49] R.K.R. Singh, Chaitanya Sharma, D.K. Dwivedi, N.K. Mehta, P. Kumar, The microstructure and mechanical properties of friction stir welded Al–Zn–Mg alloy in as welded and heat treated conditions, Materials and Design 32 (2011) 682–687.

DOI: 10.1016/j.matdes.2010.08.001

Google Scholar

[50] R. -D. Fu, Z. -Q. Sun, R. -C. Sun, Y. Li, H. -J. Liu, L. Liu, Improvement of weld temperature distribution and mechanical properties of 7050 aluminum alloy butt joints by submerged friction stir welding, Materials and Design 32 (2011) 4825–4831.

DOI: 10.1016/j.matdes.2011.06.021

Google Scholar

[51] C. -B. Fuller, M. -W. Mahoneya, M. Calabresea, L. Micona, Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds, Materials Science and Engineering A 527 (2010) 2233–2240.

DOI: 10.1016/j.msea.2009.11.057

Google Scholar

[52] M. -B. Bilgin, C. Meran, The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels, Materials and Design 33 (2012) 376–383.

DOI: 10.1016/j.matdes.2011.04.013

Google Scholar

[53] H. Nami, H. Adgi, M. Sharifitabar, H. Shamabadi, Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite, Materials and Design 32 (2011) 976–983.

DOI: 10.1016/j.matdes.2010.07.008

Google Scholar

[54] A. Forcellese, F. Gabrielli, M. Simoncini, Mechanical properties and microstructure of joints in AZ31 thin sheets obtained by friction stir welding using 'pin' and 'pinless', tool configurations, Materials and Design 34 (2012) 219–229.

DOI: 10.1016/j.matdes.2011.08.001

Google Scholar

[55] Wang Xunhonga, Wang Kuaishe, Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy, Materials Science and Engineering A 431 (2006) 114–117.

DOI: 10.1016/j.msea.2006.05.128

Google Scholar

[56] G. Padmanaban, V. Balasubramanian, Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints, Materials Chemistry and Physics 125 (2011) 686–697.

DOI: 10.1016/j.matchemphys.2010.09.072

Google Scholar

[57] A. Sirong, C. Xianjun, H. Zhiqiu, L. Yaohui, Microstructure and mechanical properties of friction stir welding of AZ31B magnesium alloy added with cerium, Journal of rare hearts, Vol. 28, No. 2, Apr. 2010, p.316.

DOI: 10.1016/s1002-0721(09)60104-6

Google Scholar

[58] N. Afrin, D.L. Chena, X. Caob, M. Jahazi, Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy, Materials Science and Engineering A 472 (2008) 179–186.

DOI: 10.1016/j.msea.2007.03.018

Google Scholar

[59] S. -M. Chowdhurya, D. -L. Chena, S. -D. Bholea, X. Cao, Effect of pin tool thread orientation on fatigue strength of friction stir welded AZ31B-H24 Mg butt joints, Procedia Engineering 2 (2010) 825–833.

DOI: 10.1016/j.proeng.2010.03.089

Google Scholar

[60] L. Commin, M. Dumont, J. -E. Masse, L. Barrallier, Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters, Acta Materialia 57 (2009) 326–334.

DOI: 10.1016/j.actamat.2008.09.011

Google Scholar

[61] Z. Barlas, H. Uzun, Microstructure and mechanical properties of friction stir butt welded dissimilar Cu/CuZn30 sheets, Manufacturing and processing (2008).

Google Scholar

[62] M. Sarvghad Moghaddam, R. Parvizi, M. Haddad-Sabzevar, A. Davoodi, Microstructural and mechanical properties of friction stir welded Cu–30Zn brass alloy at various feed speeds: Influence of stir bands, Materials and Design 32 (2011) 2749–2755.

DOI: 10.1016/j.matdes.2011.01.015

Google Scholar

[63] T. Sakthivel, J. Mukhopadhyay, Microstructure and mechanical properties of friction stir welded copper, J Mater Sci (2007) 42: 8126–8129.

DOI: 10.1007/s10853-007-1666-y

Google Scholar

[64] K.H. Song, H. Fujii, K. Nakata, Effect of welding speed on microstructural and mechanical properties of friction stir welded Inconel 600, Materials and Design 30 (2009) 3972–3978.

DOI: 10.1016/j.matdes.2009.05.033

Google Scholar

[65] H. Fujii, Y. Sun, H. Kato, Microstructure and mechanical properties of friction stir welded pure Mo joints, Scripta Materialia 64 (2011) 657–660.

DOI: 10.1016/j.scriptamat.2010.12.014

Google Scholar

[66] Y.S. Sato, T.W. Nelson, C.J. Sterling, R.J. Steel, C. -O. Pettersson, Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel, Materials Science and Engineering A 397 (2005) 376–384.

DOI: 10.1016/j.msea.2005.02.054

Google Scholar

[67] D. -H. Choi, C. -Y. Lee, B. -W. Ahn, J. -H. Choi, Y. -M. Yeon, K. Song, S. -G. Hong, W. -B. Lee, K. -B. Kang, S. -B. Jung, Hybrid Friction Stir Welding of High-carbon Steel, J. Mater. Sci. Technol., 2011, 27(2), 127-130.

DOI: 10.1016/s1005-0302(11)60037-6

Google Scholar

[68] M. Ramulu, P.D. Edwards, D.G. Sanders, A.P. Reynolds, T. Trapp, Tensile properties of friction stir welded and friction stir welded-superplastically formed Ti–6Al–4V butt joints, Materials and Design 31 (2010) 3056–3061.

DOI: 10.1016/j.matdes.2010.01.023

Google Scholar

[69] U. Dressler, G. Biallas, U. Alfaro Mercado, Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3, Materials Science and Engineering A 526 (2009) 113–117.

DOI: 10.1016/j.msea.2009.07.006

Google Scholar

[70] G. -M. Xie, Z. -Y. Ma, L. Geng, Effect of microstructural evolution on mechanical properties of friction stir welded ZK60 alloy, Materials Science and Engineering A 486 (2008) 49–55.

DOI: 10.1016/j.msea.2007.08.043

Google Scholar

[71] L. Fratini, G. Buffa, R. Shivpuri, Mechanical and Metallurgical Effects of in Process Cooling During Friction Stir Welding of AA7075-T6 Butt Joints, Acta Materialia 58 (2010) 2056–(2067).

DOI: 10.1016/j.actamat.2009.11.048

Google Scholar