Methodology for the Analysis of the Process Behaviour of Advanced High Strength Steels in Bending and Shearing Operations

Article Preview

Abstract:

In the automotive sector the application of advanced high strength steels (AHSS) for structural and safety relevant components plays an important role. Typical manufacturing processes concerning these parts are bending and cutting operations. However, the forming and cutting potential of these steel grades is different compared to conventional steels, as the process behaviour is changing. For an improved workpiece quality the fundamental knowledge of the damage and failure mechanisms is essential. This study presents a methodology for the analysis of AHSS in bending and out-of-plane shearing operations. Two micro alloyed high strength steels are investigated within this work. First results are presented concerning material characterisation by tensile tests, the material performance in air bending tests and the development of a modular punching tool. The study is closed by summarizing the damage behaviour along the process chain considering both bending and cutting. This shows the applicability of the presented methodology for analysing the process behaviour with respect to occurring failure.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 504-506)

Pages:

895-900

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Goede, M.: Karosserieleichtbau als Baustein einer CO2-Reduzierungsstrategie. 16. Aachener Kolloquium Fahrzeug- und Motorentechnik, Aachen, pp.1-17, 2007.

Google Scholar

[2] Flaxa, V.: Freytag, P.: Effizienter Karosseriebau auf Grundlage höherfester Stähle; 1. Braunschweiger Symposium Faszination Karosserie, Braunschweig, http://www.stahl.karosserie-netzwerk.info/stahl_im_karosseriebau.htm, 2003.

Google Scholar

[3] Coleman, N.; Broadbent, C.; Coates, B.: The Role of Steel in Reducing Energy Use and Life Cycle Greenhouse Gas Emissions. IOP Conference Series: Earth and Environmental Science. 6 (2009) 20, pp.1-2, 2009.

DOI: 10.1088/1755-1307/6/20/202015

Google Scholar

[4] Geyer, R.: An LCA-GHG Parametric model. Donald Bren School of Environmental Science and Management, UCSB, 2006.

Google Scholar

[5] Stoughton, T., Xia, C., Du, C., Shi, M.: Challenges for constitutive models for forming of advanced steels, Proceedings of NSF Workshop, Arlington, VA, pp.73-80, 2006.

Google Scholar

[6] Wagoner R.H.: Fundamental research issues, Proc. of NSF Workshop, Arlington, VA, 2006.

Google Scholar

[7] Kaupper, M.; Tsoupis, I.; Merklein, M.; Weidinger, P.: Characterization of damage and fracture of high strength steels within air bending. In: Akkök, M.; Budak, E.; Firat, M.; Kaftanoglu, B. (Hrsg.): Proc. 6th International Conference and Exhibition on Design and Production of Machines and Dies / Molds, (2011), Ankara: MATIM, pp.71-76, 2011.

Google Scholar

[8] Buchmayr, B.: Innovative Beiträge der Umformtechnik zum Leichtbau von Kraftfahrzeugen. BHM Berg- und Hüttenmännische Monatshefte, 125 (2007) 5, Springer Wien, p.136 – 141, 2007.

DOI: 10.1007/s00501-007-0287-8

Google Scholar

[9] Kuziak, R.; Kawalla, R., Waengler, S.: Advanced high strength steels for automotive industry. Arichives of civil and mechanical engineering, 8 (2008) 2, pp.103-117, 2008.

DOI: 10.1016/s1644-9665(12)60197-6

Google Scholar

[10] DIN EN 10002: Metallische Werkstoffe - Zugversuch, Teil 1: Prüfverfahren (bei Raum-temperatur), Deutsche Fassung EN 10002-1; CEN, Brüssel, 1991.

DOI: 10.31030/2478846

Google Scholar

[11] DIN EN ISO 7438:2005: Metallische Werkstoffe - Biegeversuch, Deutsche Fassung EN ISO 7438:2005; Beuth-Verlag, Berlin, 2005.

DOI: 10.31030/3167638

Google Scholar

[12] N.N.: Advanced High Strength Steel (AHHS) - Application Guidelines, Version 4.1; International Iron & Steel Institute – Committee on Automotive Applications, June 2009, www.worldautosteel.com, 2009.

Google Scholar