Local Atomic Arrangement of Amorphous Zr50Ni50 Alloy Analyzed by AXS-RMC Method

Article Preview

Abstract:

Structure of Zr50Ni50 Amorphous Alloy Was Analyzed by Anomalous X-Ray Scattering (AXS) Coupled with Reverse Monte-Carlo (RMC) Simulation. Topological Features in the Nearest Neighbor Atomic Configuration Clearly Suggest that the Strong Chemical Interaction between Ni and Zr Breaks the Icosahedral-Like Local Ordering Structure Common in the Dense Random Packing of Hard Sphere (DRPHS) Model. Nevertheless, the Structure of Zr50Ni50 Shows No Further Features Related to the Crystal-Like Chemical Short Range Ordering (CSRO).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-151

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. F. Ashby and A. L. Greer: Scr. Mater. 54 (2006) 321–326.

Google Scholar

[2] A. Inoue and A. Takeuchi: Acta Mater. 59 (2011) 2243–2267.

Google Scholar

[3] W. H. Wang, C. Dong and C. H. Shek: Mater. Sci. Eng. R 44 (2004) 45–89.

Google Scholar

[4] A. Inoue and A. Takeuchi: Mater. Sci. Eng. A 375–377 (2004) 16–30.

Google Scholar

[5] J. Saida, M. Imafuku, S. Sato, T. Sanada, E. Matsubara and A. Inoue: Mater. Sci. Eng. A 449–451 (2007) 90–94.

Google Scholar

[6] T. Ichitsubo, E. Matsubara, J. Saida and H. S. Chen: Mater. Trans. 46 (2005) 2282-2286.

Google Scholar

[7] T. Fukunaga, K. Itoh, T. Otomo, K. Mori, M. Sugiyama, H. Kato, M. Hasegawa, A. Hirata, Y. Hirotsu and A.C. Hannon: Intermetallics 14 (2006) 893–897.

DOI: 10.1016/j.intermet.2006.01.006

Google Scholar

[8] F. R. Boer and D. G. Perrifor: Cohesion in Metals, Elsevier Science Publishers B.V., Netherlands, (1988).

Google Scholar

[9] X. J. Liu, X. D. Hui, H.Y. Hou, T. Liu and G. L. Chen: Phys. Lett. A 372 (2008) 3313–3317.

Google Scholar

[10] X. J. Liu, X. D. Hui, G. L. Chen and T. Liu: Phys. Lett. A 373 (2009) 2488–2493.

Google Scholar

[11] J. C. de Lima, J. M. Tonnerre and D. Raoux: J. Non-Cryst. Solids 106 (1988) 38-41.

Google Scholar

[12] A. Lee, G. Etherington and C. N. J. Wagner: J. Non-Cryst. Solids 61-62 (1984) 349-354.

Google Scholar

[13] Y. Waseda: Anomalous X-ray Scattering for Materials Characterization, Springer, Heidelberg, (2002).

Google Scholar

[14] R. L. McGreevy and L. Pusztai: Mol. Simul. 1 (1988) 359-367.

Google Scholar

[15] T. Kawamata, Y. Yokoyama, M. Saito, K. Sugiyama and Y. Waseda: Mater. Trans. 51 (2010) 1796-1801.

Google Scholar

[16] K. Sugiyama, T. Muto, T. Kawamata, Y. Yokoyama and Y. Waseda: Phil. Mag. 91 (2011) 2962-2970.

Google Scholar

[17] M. Saito, C. Park, K. Omote, K. Sugiyama and Y. Waseda: J. Phys. Soc. Jpn. 66 (1997) 633–640.

Google Scholar

[18] M. Saito, C. Park, K. Sugiyama and Y. Waseda: J. Phys. Soc. Jpn. 66 (1997) 3120–3126.

Google Scholar

[19] D. T. Cromer and D. Liberman: J. Chem. Phys. 53 (1970) 1891-1898.

Google Scholar

[20] C. N. J. Wagner, H. Ocken and M. L. Joshi: Z. Naturforsch. A 20 (1965) 325–335.

Google Scholar

[21] R. Kaplow, S. L. Strong and B. L. Averbach: Phys. Rev. 138 (1965) A1336–A1345.

DOI: 10.1103/physrev.138.a1336

Google Scholar

[22] E. A. Brandes and G. B. Brook: Smithells Metals Reference Book 7th ed., Elsevier Butterworth-Heinemann Ltd., London, 1992, 4–41.

Google Scholar

[23] F. paul and R. Flahm: Phys. Rev. B 42 (1990) 10945-10949.

Google Scholar

[24] G. A. Almyras, D. G. Papageorgiou, Ch. E. Lekka, N. Mattern, J. Eckert and G.A. Evangelakis: Intermetallics 19 (2011) 657-661.

DOI: 10.1016/j.intermet.2011.01.001

Google Scholar

[25] M. Bououdina, B. Lambert-Andron, B. Ouladdiaf, S. Pairis and D. Fruchart: J. Alloy. Compd. 356-357 (2003) 54–58.

DOI: 10.1016/s0925-8388(03)00166-x

Google Scholar