Effect of Microalloying Elements on Solidification Microstructure of the La(Fe0.89Si0.11)13 Alloy

Article Preview

Abstract:

The Effect of Microalloying Elements and Compounds, such as Be, B, C, P, S, Ti, V, Cu, Zn, in, BN, VN, Mn3N, LaN, MnS and Ti4C2S2, Ranging in Amount from 0.005 to 0.2 at.%, on the α-Fe + FeLaSi Two-Phase Microstructure of a La(Fe0.89Si0.11)13 as-Melted Specimen Was Investigated. The Addition of Mn3N Was Found to Contribute to α-Fe Grain Refinement to a Certain Extent, but to Harm the Uniform Growth of the τ1 Phase in the Stage of Subsequent Annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-177

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujita, S. Fujieda, K. Fukamichi, H. Mitamura, T. Goto. Phys. Rev. B 65 (2002) 014410.

Google Scholar

[2] A. Fujita, Y. Akamatsu, K. Fukamichi. J. Appl. Phys. 85 (1999) 4756.

Google Scholar

[3] S. Fujieda, A. Fujita, K. Fukamichi. Appl. Phys. Lett. 81 (2002) 1276.

Google Scholar

[4] S. Fujieda, A. Fujita, K. Fukamichi. Mater. Trans. 45(11) (2004) 3228.

Google Scholar

[5] S. Fujieda, A. Fujita, K. Fukamichi. J. Magn. Magn. Mater. 310 (2007) e1004.

Google Scholar

[6] X. B. Liu, Z. Altounian. J. Magn. Magn. Mater. 264 (2003) 209.

Google Scholar

[7] S. Fujieda, N. Kawamoto, A. Fujita, K. Fukamichi. Mater. Trans. 47(3) (2006) 482.

Google Scholar

[8] K. Morrison, S.M. Podgornykh, Ye.V. Shcherbakova, A.D. Caplin, L.F. Cohen. Phys. Rev. B 83 (2011) 144415.

Google Scholar

[9] A. Fujita, S. Fujieda, Y. Hasegawa, K. Fukamichi. Phys. Rev. B 67 (2003) 104416.

Google Scholar

[10] X. Chen, Y. Chen, Y. Tang. J. Alloy. Compd. 509 (2011) 2864.

Google Scholar

[11] T. Liu, Y. Chen, Y. Tang, S. Xiao, E. Zhang, J. Wang. J. Alloy. Compd. 475 (2009) 672.

Google Scholar

[12] J. Liu, M. Krautz, K. Skokov, T. G. Woodcock, O. Gutfleisch. Acta Mater. 59 (2011) 3602.

Google Scholar

[13] K. Niitsu, R. Kainuma. Intermetallics 20 (2012) 160.

Google Scholar

[14] T. T. M. Palstral, J. A. Mydosh, G. J. Nieuwenhuys, A. M. van der Kraan, K. H. J. Bushow. J. Magn. Magn. Mater. 36 (1983) 290.

Google Scholar

[15] A. Fujita, K. Fukamichi. J. Alloy. Compd. 404 (2005) 554.

Google Scholar

[16] F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, G. H. Rao, X. X. Zhang. Appl. Phys. Lett. 78 (2001) 3675.

Google Scholar

[17] X. B. Liu, Z. Altounian, G. H. Tu. J. phys.: Condens. Matter. 16 (2004) 8043.

Google Scholar

[18] A. Yan, K. H. Muller, O. Gutfleisch. J. Appl. Phys. 97 (2005) 36102.

Google Scholar

[19] W. Kurz, B. Giovanola, R. Trivedi. Acta Met. 34 (1986) 823.

Google Scholar

[20] A. R. Clauss, E. Bischoff, R. E. Schacherl, E. J. Mittemeijer. Mater. Sci. Technol. 26(3) (2010) 297.

Google Scholar