Clean Synthesis of Silver-Silica Aerogels via Supercritical Drying and Impregnation

Article Preview

Abstract:

A simple and clean route to synthesize nano-scale mesoporous silver-silica composite aerogels was described here. The composite aerogels were obtained by adding a silver colloid to an about-to-gel silica sol prepared and then dried in supercritical anhydrous ethyl alcohol. The silver colloid and composite aerogels with silver content of 0wt%, 0.5wt%, 1wt% and 3.5wt% were characterized by UV-visible absorption spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD) and N2 Brunauer-Emmett-Teller (BET). The results show that silver nanoparticles with size about 40nm are successfully impregnated into the spongy porous structure of silica. The surface area decreases from 845 to 443m2/g with the increase of silver content. And the nanoscopic surface and bulk properties of each component are retained in the solid composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-229

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Marina Naodovic, Hisashi Yamamoto. Asymmetric Silver-Catalyzed Reactions. Chemical Reviews. [J], 2008, 108: 3132-3148.

DOI: 10.1021/cr068413r

Google Scholar

[2] A. Y. Stakheev and L. M. Kustov, Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Applied Catal. A [J], 1999, 188: 3-35.

DOI: 10.1016/s0926-860x(99)00232-x

Google Scholar

[3] J.M. Wallace, J.K. Rice, J.J. Pietron. Silica Nanoarchitectures Incorporating Self-Organized Protein Superstructures with Gas-Phase Bioactivity. Nano Letters[J], 2003, 3(10): 1463-1467.

DOI: 10.1021/nl034646b

Google Scholar

[4] M.F. Bertino, J.F. Hund, J. Sosa, G. Zhang, C. Sotiriou-Leventis,N. Leventis, A. Tokuhiro, J. Terry. Room Temperature Synthesis of Noble Metal Clusters in the Mesopores of Mechanically Strong Silica-Polymer Aerogel Composites. J. Non-Cryst. Solids [J], 2004, 30: 43-48.

DOI: 10.1023/b:jsst.0000028178.25991.9e

Google Scholar

[5] P. -W. Wu, W. Cheng, I.B. Martini, B. Dunn, B.J. Schwartz, E. Yablonovitch. Two-Photon Photographic Production of Three-Dimensional Metallic Structures within a Dielectric Matrix. Adv. Mater. [J], 2000, 12(19): 1438-1441.

DOI: 10.1002/1521-4095(200010)12:19<1438::aid-adma1438>3.0.co;2-y

Google Scholar

[6] F. Stellacci, C.A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S.M. Kuebler, S.J.K. Pond, Y. Zhang, S.R. Marder, J.W. Perry. Laser and Electron-Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning. Adv. Mater. [J], 2002, 14 (3): 194-198.

DOI: 10.1002/1521-4095(20020205)14:3<194::aid-adma194>3.0.co;2-w

Google Scholar

[7] H. Virginie, A. Markus, C. Thierry, T.D. Mona. Stable Silver Nanoparticles Immobilized in Mesoporous Silica. Chem. Mater. [J], 2003, 15(10): 1993-(1999).

Google Scholar

[8] K. Tae-Gon, K. Young Woon, K. Jong Soon, P. Byungwoo. Silver-nanoparticle dispersion from the consolidation of Ag-attached silica colloid. J. Mater. Res. [J], 2004, 19(5): 1400-1407.

DOI: 10.1557/jmr.2004.0187

Google Scholar

[9] Pierre AC, Pajonk GM. Chemistry of Aerogels and Their Applications. Chemical Reviews[J], 2002, 102: 4243-4266.

DOI: 10.1021/cr0101306

Google Scholar

[10] Hüsing N, Schubert U. Aerogel-airy materials: chemistry, structure, and properties. Adv. Mater. [J], 2007, 37: 22-45.

Google Scholar

[11] Leventis N, Sadekar A, Chandrasekaran N, Sotiriou-Leventis C. Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3d silica networks. Chem. Mater. [J], 2010, 22: 2790-2803.

DOI: 10.1021/cm903662a

Google Scholar

[12] C. A. Morris, M. L. Anderson, R. M. Stroud, C.I. Merzbacher, D.R. Rolison. Silica Sol as a Nanoglue: Flexible Synthesis of Composite Aerogels. Science[J], 1999, 284: 622-624.

DOI: 10.1126/science.284.5414.622

Google Scholar

[13] J.F. Hund, M.F. Bertino, G. Zhang, C. Sotiriou-Leventis, N. Leventis, A. Tokuhiro, J. Farmer. Formation and Entrapment of Noble Metal Clusters in Silica Aerogel Monoliths by γ-Radiolysis. J. Phys. Chem. B [J], 2003, 107(2): 465-469.

DOI: 10.1021/jp026358u

Google Scholar

[14] Petit C, Lixon P, Pileni M-P. In situ synthesis of silver nanocluster in AOT reverse micelles. J. Phys. Chem. [J], 1993, 97(49): 12974-12983.

DOI: 10.1021/j100151a054

Google Scholar

[15] K. Balkis Ameen, K. Rajasekar, T. Rajasekharan. Silver Nanoparticles in Mesoporous Aerogel Exhibiting Selective Catalytic Oxidation of Benzene in CO2 Free Air. Catalysis Letters [J], 2007, 119: 289-295.

DOI: 10.1007/s10562-007-9233-3

Google Scholar

[16] K. Balkis Ameen, T. Rajasekharan, M.V. Rajasekharan. Grain size dependence of physico-optical properties of nanometallic silver in silica aerogel matrix. J. Non-Cryst. Solids [J], 2006, 352(8): 737-746.

DOI: 10.1016/j.jnoncrysol.2006.02.012

Google Scholar