A Hierarchical Approach to Purify and Functionalize Pristine Carbon Nanotubes

Article Preview

Abstract:

A step-by-step, hierarchical approach is explored in the present work to purify and functionalize carbon nanotubes synthesized by chemical vapor deposition. Attempts are made to purify and functionalize CNTs without extinguishing their aspect ratios. The carbon impurities are removed by thermal oxidation, whilst the unprotected metallic catalyst particles are eliminated by wet oxidation, subsequently; CNT bundles are de-roped by surfactant assisted sonication. Finally, protected metallic catalyst particles are removed and functional groups (hydroxyl and carboxyl) are attached by acid treatment and wet oxidation, respectively. The derivate CNTs are characterized using zeta potential measurements, TGA, XRD, FTIR and SEM. The characterization showed that in optimum experimental conditions the catalytic particles are removed upto 80%, the carbon impurities are eliminated upto 95% and chemical functionalities of hydroxyl and carboxyl is occurred with noticeable de-roping of the CNT bundles.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

118-123

Citation:

Online since:

May 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Porroa, S. Mussoa, M. Vinante, L. Vanzetti, M. Anderle, F. Trottac, and A. Tagliaferroa; Physica E37 (2007), p-58.

Google Scholar

[2] D. Yuan and J. Liu; Small 3, No. 3, (2007), p-366.

Google Scholar

[3] Zhi-Min Dang, L. Wang, and Li-Pei Zhang; J Nanomater. Article ID 83583 (2006), p-1.

Google Scholar

[4] V. Djordjević, J. Djustebek, J. Cvetićanin, S. Velićknović, M. Veljković, M. Bokorov, B. Babić Stojić, and O. Nešković; ; Jr. Opto and Adv Mat Vol. 8, No. 4, (2006), p-1631.

Google Scholar

[5] Jean-Marc Bonard, Th. Stora, Jean-Paul Salvetat, F. Maier, Th. Stöckli, C. Duschl, L. Forró, W. A. Heer and A. Châtelain; Adv. Mater. 9, 10, (1997), p-827.

DOI: 10.1002/adma.19970091014

Google Scholar

[6] M. R. Pederson, and J. Q. Broughton; Physical Review Letters 69 , 18, (1992), p-2689.

Google Scholar

[7] E. Dujardin, T. W. Ebbesen, H. Hiura, , and K. Tanigaki; Science 265 , 5180, (1994), p- 1850.

DOI: 10.1126/science.265.5180.1850

Google Scholar

[8] Ajayan, P. M. and Iijima, S., Nature, 333 (1993), p-364.

Google Scholar

[9] D. Ugarte, A. Chatelain, and W. A de Heer; Science 274, 5294, (1996), p- 1897.

Google Scholar

[10] C.H. Chen and C.C. Huang, Int. J. Hydro. Ener; Vol. 32, 2, (2007), p- 237.

Google Scholar

[11] L.F. Chen, H.Q. Xie, Y. Li, and W. Yu; J. Nano mat. (2008), p-5.

Google Scholar

[12] M. Mansoor, S. Saddique and M. M. Asim; Key Eng. Mat; Vol. 442 (2010), p-116.

Google Scholar

[13] K. Morishita and T. Takarada; J. Mater. Sci. 34, (1999), p- 1169.

Google Scholar

[14] M.N. Vesali, A.A. Khodadadi, Y. Mortazavi, S.O. Alizadeh, F. S . Pourfayaz and S. Mosadegh; Proceedings of world academy of science, engineering and technology, 37, January (2009), p- 177.

Google Scholar

[15] M.S. Robert, G.B. Clayton, C.M. Terence; Spectrometric identification of organic compounds. 1981; 4th ed. John Wiley and Sons NY; 104-122.

Google Scholar

[16] C. Zhao, L. Ji, H. Liu, G. Hu, S. Zhang, M. Yang, and Z. Yang; J of Sol State Chem, 177 (2004), p-4394.

Google Scholar

[17] P. Chingombe, B. Saha, and R. J. Wakeman; Carbon, 43, (2005), p- 3132.

Google Scholar