Effect of Sintering Temperature on Structural, Electrical and Dielectric Parameters of Mn-Zn Nano Ferrites

Article Preview

Abstract:

Mn-Zn ferrite powders (Mn0.5Zn0.5Fe2O4) were prepared by the chemical co-precipitation method. The effect of sintering temperature on the crystalline phase formation and dielectric properties were investigated by X-ray diffraction and impedance analyzer respectively. The TGA/DTA analysis was carried out to know decomposition mechanism. Ferrites decomposed to Fe3O4 above 873 K sintering temperature. Crystallite size increased with increasing sintering temperature between 7-13 nm. The resistivity decreased with increase in temperature showing semiconducting like behaviour. Activation energy was in the range of 0.70 to 0.77eV for these samples. Dielectric constant decreased with increasing frequency. Relaxation peak occurred for loss tangent versus frequency curves. The ac conductivity explained using small polaron tunnelling (SPT) model.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

163-170

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bayka, N. Kasapogul, Y. Koseoglu, A.C. Basaran, H. Kavas, M.S. Toprak, Cent. Eur. J. Chem. 6 (1) (2008) 125–130.

Google Scholar

[2] C. Venkataraju, G. Sathishkumar, K. Sivakumar, J. Magn. Magn. Mater. 322 (2010) 230– 233.

Google Scholar

[3] L. Yu, Y. Cui, X. Zhao, B. Zou, S.J. Feng, J. Magn. Magn. Mater. 301 (2006) 445–451.

Google Scholar

[4] G. Ott, J. Wrba, R. Lucke J. Magn. Magn. Mater. 254–255 (2003) 535–537.

Google Scholar

[5] E.C. Snelling, Soft Ferrites—Properties and Applications, Butterworths, London, (1988).

Google Scholar

[6] A. Goldman, Modern Ferrite Technology, 2nd Ed. Springer, Berlin, (2006).

Google Scholar

[7] P. Hu, H. Yang , D. Pan , H. Wang , J. Tian, S. Zhang , X. Wang, A. Volinsky, J. Magn. Magn. Mater. 322 (2010) 173–177.

Google Scholar

[8] A. Verma, M.I. Alam, R. Chatterjee, T.C. Goel, R.G. Mendiratta, J. Magn. Magn. Mater. 300 (2006) 500–505.

Google Scholar

[9] I.H. Gul, A.Z. Abbasi, F. Amin, M.A. Rehman, A. Maqsood, J. Magn. Magn. Mater 311 (2007) 494.

Google Scholar

[10] R.P. Pant, Vinod Kumar, S.K. Haldar, S.K. Gupta, Sukhvir Singh, Int. J. Nanosci. 6 (2007) 515.

Google Scholar

[11] V. Kumar, A. Rana, M.S. Yadav, R.P. Pant, J. Magn. Magn. Mater. 320 (2008) 1729.

Google Scholar

[12] M. George, S.S. Nair, A.M. John, P.A. Joy, M.R. Anantharaman, J. Phys. D: Appl. Phys. 39 (2006) 900.

Google Scholar

[13] R.F. Lange, B.J. Kellet, J. Am. Ceram. Soc. 72 (1989) 735.

Google Scholar

[14] A. Kosak, D. Makovec, M. Drofenik, Phys. Stat. Sol. C1 12 (2004) 3521–3524.

Google Scholar

[15] A.K.M. Akther Hossain. S.T. Mahmud, M. Seki, T. Kawai, H. Tabata, J. Magn. Magn. Mater. 321 (2009) 81-87.

Google Scholar

[16] J.C. Maxwell, Electricity and Magnetism, Vol. 1, Oxford University Press, (1873) 328.

Google Scholar

[17] K. Wagner, Ann. Phys. 40 (1913) 817.

Google Scholar

[18] C. Koop's, Phys. Rev. 83 (1951) 121.

Google Scholar

[19] M.A. Shaik, S.S. Bellard, B.K. Chougule, J. Magn. Magn. Mater. 152 (1996) 391.

Google Scholar

[20] K. Iwachi, Jpn. J. Appl. Phys. 10 (1971) 1520.

Google Scholar

[21] L.I. Rabinkin, Z.I. Novika, Ferrites Minsk (1960) 146.

Google Scholar

[22] U.N. Trivedi, M.C. Chhantbar, K.B. Modi, H.H. Johi, Indian J. Pure Appl. Phys. 43 (2005) 688–690.

Google Scholar

[23] A.K. Singh, T.C. Goel, R.G. Mendiratta, J. Appl. Phys. 91 (2002) 6626.

Google Scholar

[24] S. R. Elliot, Adv. Phys. 36 (1987) 135.

Google Scholar

[25] S.A. Mazen, H.A. Dawoud, Mater. Chem. Phys. 82 (2003) 557.

Google Scholar

[26] S.A. Mazen, Mater. Chem. Phys. 62 (2000) 139.

Google Scholar