Microstructures, Electrical and Magnetic Properties of Zn Doped Co Nanoferrites

Article Preview

Abstract:

Non toxicity, bio compatibility and nanometer sizes regime which is comparable to the size of a cell, makes nanocrystalline Co ferrites particles very proficient. In the present research Zn doped cobalt ferrites were prepared by the chemical co-precipitation method and characterized by X-ray diffraction (XRD) at room temperature for structural analysis. X-ray diffraction patterns confirmed the FCC spinel structure of synthesized particles. Crystallite sizes were calculated from the most intense peak (311) using the Debye-Scherrer formula. The obtained crystallite sizes were in nanometer range for all the samples synthesized at reaction temperature of 70°C. Then samples were sintered at 550°C for 2 hours, characterized again by X-ray diffraction at room temperature. The crystallite sizes and lattice constants for all the samples were calculated again from the data obtained by XRD. DC electrical resistivity and AC electrical transport properties were analyzed. The magnetic properties such as coercivity (Hc) and remanence (Mr) of Co1-xZnxFe2O4 for x = 0.0, 0.2, 0.4 were measured at room temperature by vibrating sample magnetometer. Coercivity and remanence were found maximum with minimum value of Zn in Co1-xZnxFe2O4. Observed structural and conduction properties of synthesized nanomaterials were correlated.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

221-226

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.I. Baraton, Synthesis, Fictionalization and surface treatment of Nanoparticles, American Scientific Publishers, USA (2003).

Google Scholar

[2] N. Matsushita, K. Noma, A. Morisako, S. Nakagawa and M. Naoe, IEEE Trans. on Magn. 32 (5) (1996).

Google Scholar

[3] G. Vaidyanathana, S. Sendhilnathanb, J. Mag. Magn. Mater. 320 (2008), 803–805.

Google Scholar

[4] S.W. Leea, S. Baea, Y. Takemurab, I. B. Shimc, T. M. Kimd, J. Kimd, H. J. Leed, S. Zurne, C. S. Kim. J. Mag. and Magn. Mater. 310 (2007) 2868–2870.

Google Scholar

[5] O. Tegus, E. Brück, K. H. J. Buschow and F. R. deBoer Nature 415 (2002), 150-152.

Google Scholar

[6] B.P. Rao,K. H. Rao, T.V. Rao, A. Paduraru, O. F. Caltun, J. Optoele. Adv. Mat. 7 (2005)701.

Google Scholar

[7] Y.I. Kim, D. Kim and C.S. Lee, Physica B, Cond. Matt 337 (2003), 42.

Google Scholar

[8] A.K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu and S. Majetich. IEEE Trans. Magn. 36 (2000), 3029.

DOI: 10.1109/20.908666

Google Scholar

[9] V. Kumar, A. Rana, M. S. Yada, R. P. Pant, J. Mag. Magn. Mater. 320 (2008), 1729–1734.

Google Scholar

[10] S. Dey, J. Ghose, Mater. Res. Bulletin 38 (2003), 1653–1660.

Google Scholar

[11] D. Carta, M. F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, and A. Corrias, J. Phys. Chem. C. 113 (2009), 8606–8615.

DOI: 10.1021/jp901077c

Google Scholar

[12] M. S. Tomar, S. P. Singh, O. Perales-Perez, R. P. Guzman, E. Calderon, C. Rinaldi Ramos, J. Microelectronics 36 (2005), 475-479.

DOI: 10.1016/j.mejo.2005.02.086

Google Scholar

[13] R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, , Physica B 363 (2005), 225-231.

DOI: 10.1016/j.physb.2005.03.025

Google Scholar

[14] M.A. Rehman, M. Ali, M Akram, K. Khan and A. Maqsood. Phys. Scr. 83 (2011), 015602.

Google Scholar

[15] A. Verma, T. C. Goel, R. G. Mendirata, M. Alam, Mater. Sci. Eng. 60 (1999) 156.

Google Scholar

[16] W. Bayoumi, J. Mater. Sci. 42 (2007), 8254-8261.

Google Scholar

[17] I. H Gul, A. Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, J. Mag. Magn. Mater. 311 (2007), 494–499.

DOI: 10.1016/j.jmmm.2006.08.005

Google Scholar

[18] R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, Physica B 363 (2005), 225-231.

DOI: 10.1016/j.physb.2005.03.025

Google Scholar

[19] S. Daliya, Mathew, Ruey-Shin Juang, Chem. Eng. Journal 129 (2007), 51–65.

Google Scholar

[20] N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys: Condens. Matter 14 (2002), 3221.

Google Scholar

[21] K.W. Wagner, Ann. Phy. 40 (1930), 817.

Google Scholar

[22] [J.S. Kim, K. H. Lee, C. Cheon, J. Electrocerams 22(2009), 233-237.

Google Scholar