Preparation, Structural and Electrical Properties of Nanocrystalline Zr-Mn Cobalt-Ferrite Synthesized by the Co-Precipitation Method

Article Preview

Abstract:

The present study describes the preparation, structural and electrical characterization of nanosized Zr-Mn cobalt-ferrites. The nominal compositions CoFe2-2xZrxMnxO4 (0.10.4) have been synthesized by the co-precipitation method. These nanopowder products were sintered in furnace at temperature of 800 °C for 8 hour with a heating rate of 10οC/min to obtain these ferrites. The nanopowder was evaluated using XRD, FT-IR and SEM. The XRD data showed that all the samples are of single phase and the crystallite size is found in the range of 2630 nm. The lattice constant (a), X-ray density (dx), porosity (P) and bulk density (dm) are also calculated from XRD data. FT-IR study confirms the presence of ferrite functional groups. The IR spectra of Zr-Mn ferrite system have been analyzed in the frequency range 400650 cm-1. It revealed two prominent bands υ1 and υ2 which are assigned to tetrahedral and octahedral metal complexes, respectively. The position of the highest frequency band is around 550 cm-1 while the lower frequency band is around 425 cm-1. The structural properties are also analyzed on scanning electron microscopy (SEM) at room temperature. Additionally, the dc electrical resistivity decreased with the rise in temperature for all the samples, showing a semiconductor like behavior. From the dc electrical resistivity the activation energy and drift mobility are determined. Both the drift mobility and activation energy increase with a rise in x.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

248-254

Citation:

Online since:

May 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Zhang, J. Luo, Q. Chen, J. Phys. Condens. Matter 17 (2005) 5095.

Google Scholar

[2] M. A. Dar, K. M. Batoo, V. Verma, W. A. Siddiqui, R. K. Kotnala, J. Alloys and Compd 493 (2010), 553-560.

Google Scholar

[3] C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 122 (2000) 6263.

Google Scholar

[4] S. Balaji, R.K. Selvan, L.J. Berchmans, S. Angappan, K. Subramanian, C.O. Augustin, Mater. Sci. Eng. B 119 (2005) 119.

Google Scholar

[5] Y. Lu, Q. Zhu, F. Liu, Phys. Lett. A 359 (2006) 66.

Google Scholar

[6] D. Siegel, J. Mater. Chem. 7 (1999) 1297.

Google Scholar

[7] J. Amighian, M. Mozaffari, B. Nasr, J. Solid State Phys. 3 (2006) 3188.

Google Scholar

[8] M. J. Iqbal, B. Ul-Amin, Mater Sc and Engg B 164 (2009) 6-11.

Google Scholar

[9] K. Bhattacharjee, C. K. Ghosh, M. K. Mitra, G. C. Das, S. Mukherjee, K. K. Chattopadhyay, J. Nanopart Res, doi: 10. 1007/s1151-010-0074-4.

Google Scholar

[10] F. M. M. Pereira, C. A. R. Junior, M. R. P. Santos, R. S. T. M. Sohn, F. N. A. Freire, J. M. Sasaki, J. A. C. de Paiva, and A. S. B. Sombra, J. Mater Sc: Mater Electron 19 (2008) 627-638, doi: 10. 1007/s10854-007-9411-5.

Google Scholar

[11] E.J.W. Verwey, F. De. Boer, H. V. santen, J. Chem. Phys. 16 (1948) 1091.

Google Scholar

[12] A.M. El-Sayed, Mater Chem. Phys. 82 (2003) 583.

Google Scholar

[13] I.H. Gul, F. Amin, M. A. Rehman, A. Maqsood, Scr. Mater. 56 (2007) 497.

Google Scholar

[14] I.H. Gul, A.Z. Abbasi, F. Amin, M.A. Rehman, A. Maqsood, J. Magn. Magn. Mater. 311 (2007) 494.

Google Scholar

[15] R.G. Kharabe, R.S. Devan and B.K. Chougale, J. Alloys. Compd. 463 (2008) 67-72.

Google Scholar

[16] D. Ravinder, G.R. Kumar, Y.C. Venudhar, J. Alloys. Compd. 363 (2004) 6.

Google Scholar