Synthesis of Phase Pure Strontium Doped Lead Zirconate Titanate Nano Crystalline Powder by Sol-Gel Approach

Article Preview

Abstract:

Phase pure Strontium doped PZT (Pb0.96Sr0.04Zr0.53Ti0.47O3) was synthesized by sol gel process. Zirconium and Titanium alkoxides were used as starting materials and Lead (II) Acetate trihydrate was used as Pb source. The alkoxides mixture was stabilized by acetylacetonate. The vacuum dried gel was calcined at different temperatures to study the calcination temperature and the resulting samples were analyzed by DSC, TG and XRD. The powder remained amorphous until a temperature of 550°C. The morphology and composition of the powder was studied using EDX, stereomicroscope and high resolution SEM.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

454-460

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Jaffe, R. S. Roth, and S. Marzullo: J. Appl. Phys. Vol. 25, (1954), pp.809-810.

Google Scholar

[2] D. Berlincourt: J. Acoust. Soc. Am. Vol. 91(5), (1992), pp.3034-3040.

Google Scholar

[3] S. Banerjee and R. N. Singh: Ferroelectrics. Vol. 211, (1998), pp.89-110.

Google Scholar

[4] H. Zheng, I. M. Reaney, W. E. Lee, N. Jones and H. Thomas: J. Europ. Cer. Soc, Vol. 21, (2001), pp.1371-1375.

Google Scholar

[5] N. Texier, C. Courtois, P. Champagne, A. Leriche: Mat. Lett. Vol. 58, (2004), pp.2489-2493.

Google Scholar

[6] S. Linardos, Q. Zhang and J. R. Alcock: J. Europ. Cer. Soc. Vol. 26, (2006), p.117–123.

Google Scholar

[7] C. Sangsubun, A. Watcharapasorn and S. Jiansirisomboon: Curr. App. Phy. Vol. 8, (2008), p.61–65.

Google Scholar

[8] X. G. Tang, H. L. W . Chan, A. L and Ding, Q. R. Yin, Surf: Coat. Tech. Vol. 161, (2002), p.169–173.

Google Scholar

[9] W. Nimmo, N. J. Ali, R. M. Brydson, C. Calvert, E. Hampartsoumian, D. Hind and S. J. Milne: J. Am. Ceram. Soc. Vol, 86(9), (2003), pp.1474-1480.

DOI: 10.1111/j.1151-2916.2003.tb03499.x

Google Scholar

[10] A. Wu, I. M. Salvado, P. M. Vilarinho and J. L. Bapista: J. Am. Cer. Soc. Vol. 81(10), (1998), pp.2640-2644.

Google Scholar

[11] L. G Hubert-Pfalzgraft: New J. of Chem. Vol. 11, (1987), p.663.

Google Scholar

[12] J. Livage, M. Henry and C. Sanchez in: Sol-Gel Chemistry of Transition Metal Oxides, Volume 18, Progress in solid state chemistry, (1988).

DOI: 10.1016/0079-6786(88)90005-2

Google Scholar

[13] C. Sanchez, J. Livage, M. Henry and F. Babonneau: J. Non-Cryst. Solids. Vol. 100, (1988), pp.65-76.

Google Scholar

[14] C. Sanchez, F. Bpbonneau, and A. Leaustie in: Ultrastructure Processing of Advanced Ceramics, edited by J. D. Mackenzie and D.R. Ulrich Wiley, NY (1988).

Google Scholar

[15] F. Bpbonneau, A. Leaustie and J. Livage in: Better ceramics Through Chemistry III, Mater. Res. Soc. Symp. Proc, 121, edited by C.J. Brinker, D. R. Ulrich Mater. Res. Soc. Pittsburgh, Pa, (1988).

Google Scholar

[16] K. Kitaoka, H. Kozuka and T. Yoko: J. Am. Ceram. Soc. Vol. 81 (1998), p.1189–96.

Google Scholar

[17] P. Tarte in: The Determination of Cation Co-ordination in Glasses by Infra-Red SpectroscopyI, edited by J. A. Prims Amsterdam: The Netherlands (1965).

Google Scholar

[18] A. K. Zak, W. H. A. Majid: Cer. Int. Vol. 37, (2011), pp.753-758.

Google Scholar

[19] K. S. Jacob, N. R. Panicker, I. P. Selvam and V. Kumar: J. Sol-gel. Sci and Tech. Vol. 28, (2003), p.289–295.

Google Scholar

[20] C. J. Brinker, G. W. Scherer: Sol-gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

Google Scholar

[21] M. Mai, C. Lin1, Z. Xiong1, H. Xue1and L. Chen: J. Phys.: Conf. Ser. Vol. 152, (2009), 012077.

Google Scholar