Correlation of Microstructures with Electrical Transport Properties in Mn Doped Co Nanoferrite Particles

Article Preview

Abstract:

Magnetic nanocomposites are offering a variety of novel features and tune able properties, mainly depending on particle size, cation distribution, morphology and porosity of the prepared materials. The aim of this research work is to understand the effects of Mn doping on the microstructures and hence consequences on the electrical transport properties with shift of cation distribution in CoFe2O4. Co1-xMnxFe2O4 nanocrystallite particles with stoichiometric proportion (x) varying from 0.0 to 1.0 were prepared by co-precipitation method. X-ray diffraction patterns confirmed the FCC spinel structure of synthesized particles. The crystal structure is found to be inverse cubic spinel with a space group Fd3m and the lattice constants ranges from 8.36 Å to 8.46 Å The crystallite sizes were calculated from the most intense peak (311) using the Debye-Scherrer formula for all the samples those were synthesized at reaction temperature of 70°C. Then samples were sintered at 600°C for 3 hours, characterized by X-ray diffraction at room temperature and DC electrical resistivity measurements were done as a function of temperature by two-probe method from 370 K to 690 K. The measurements showed that DC electrical resistivity decreased with increase in temperature ensuring the semiconductor nature of the material in this temperature range. DC electrical resistivity results were discussed in terms of polaron hopping model under the effects of cation distribution. AC electrical properties were also analyzed. All the observed properties were correlated with observed microstructures.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

487-492

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Chen, Y. Shang, H. Liu, Y. Hua, Mater. Design 31 (2010), p-1661.

Google Scholar

[2] H. M. El-Sayed, J. Alloy. Comp. 474 (2009), p-561.

Google Scholar

[3] C. Q. Sun, Prog. Sol. Stat. Chem. 35 (2007), p-1.

Google Scholar

[4] B. H. Shon, R. E. Cohen, Chem. Mater. 9 (1997), p-264.

Google Scholar

[5] D. S. Mathew, R. S. Juang, J. Chem. Engin. 129 (2007), p-51.

Google Scholar

[6] J. L. Brauman. Science 271 (1996), p-889.

Google Scholar

[7] V. Kumar, A. Rana, M. S. Yadav, R. P. Pant, J. Magn. Magn. Mater. 320 (2008), p-1729.

Google Scholar

[8] S. A. Saafan, S. T. Assar, B. M. Moharramb, M. K. El-Nimr, J. Magn. Mag. Mater 322 (2010) p-628.

Google Scholar

[9] N. Matsushita, K. Noma, A. Morisako, S. Nakagawa, M. Naoe, IEEE Trans. Magn, 32 (5) (1996).

Google Scholar

[10] G. Vaidyanathana, S. Sendhilnathanb, J. Mag. Magn. Mater. 320 (2008), p-803.

Google Scholar

[11] S. W. Leea, S. Baea, Y. Takemurab, I. B. Shimc, T. M. Kimd, J. Kimd, H. J. Leed, S. Zurne, C. S. Kim. J. Mag. and Magn. Mater. 310 (2007), p-2868.

Google Scholar

[12] O. Tegus, E. Brück, K. H. J. Buschow and F. R. deBoer, Nature 415, (2002), p-150.

Google Scholar

[13] D. C. Jiles, Act. Mater. 51 (2003), p-5907.

Google Scholar

[14] Y. Tae-Jong, K. J. Sung, K. B. Geol, Y. K. Nam, C. M. Haing, J. Kyu, L. Angew, Chem. Int. Ed. 44 (2005), p-1068.

Google Scholar

[15] C. H. Cunningham, T. Arai, P. C. Yang, M. V. McConnell, J. M. Pauly, S. Connolly, M. Magn. Reson. Med. 53 (2005), p- 999.

Google Scholar

[16] A. K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu, S. A. Majetich, IEEE. Trans. Magn. 36 (2000), p-3029.

DOI: 10.1109/20.908666

Google Scholar

[17] C. R. Vestal, J. Z. Zhang, Int. J. Nanotech. 1 (2004), p- 240.

Google Scholar

[18] Y. I. Kim, D. Kim and C. S. Lee, Physica B, Cond. Matt 337 (2003), p- 42.

Google Scholar

[19] A. K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu and S. Majetich. IEEE. Trans. Magn. 36 (2000), p-3029.

DOI: 10.1109/20.908666

Google Scholar

[20] V. Kumar, A. Rana, M. S. Yada, R. P. Pant, J. Mag. Magn. Mater. 320 (2008), p-1729.

Google Scholar

[21] S. Dey, J. Ghose, Mater. Res. Bulletin 38 (2003), p-1653.

Google Scholar

[22] A. Verma, T. C. Goel, R. G. Mendirata, M. Alam, Mater. Sci. Eng. 60 (1999), p-156.

Google Scholar

[23] W. Bayoumi, J. Mater. Sci. 42 (2007), p-8254.

Google Scholar

[24] N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys: Condens. Matter 14, 3221 (2002), p-478.

Google Scholar

[25] K. W. Wagner, Ann. Phy. 40 (1930), p-817.

Google Scholar