Synthesis of Laser Beam Rapidly Solidified Novel Surfaces on D2 Tool Steel

Article Preview

Abstract:

Surface layer of D2 tool steel was subjected to laser surface melting using continuous wave 2.5kW CO2 laser in point source melting mode. The processing parameters were varied to achieve a uniform depth of around 2 mm. Microstructural study revealed epitaxial growth of fine dendritic structure with secondary dendrite arm spacing in the range of 20-25 µm. The phases in the parent annealed sample were BCC ferrite and chromium rich M7C3 carbide. The major phase after laser treatment was austenite and M7C3. The average hardness of annealed sample was 195 HV which increased to 410 HV after laser melting. Corrosion studies in 2% HCl solution exhibited a drastic improvement in corrosion resistance in laser treated samples. Improvement in properties is attributed to the refinement and uniformity of microstructure in the rapidly solidified surface. The case of a moving heat source was subjected to computer aided simulation to predict the melt depth at different processing conditions in point source melting mode. The calculated depths using the model, in ABAQUS software was found in good agreement with the experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

493-499

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Sun, S. Hanaki, H. Uchida, H. Sunada and N. Tsujii, (2003) Rapid effect of hot work tool steel by laser-melting process, Journal. Mater. Sci. Technol. 19, 91-93.

DOI: 10.2355/isijinternational.43.127

Google Scholar

[2] F. Abe, K. Osakada, M. Shiomi, K. Uematsu and M. Matsumoto (2001) The manufacturing of hard tools from metallic powders by selective laser melting, Journal of Materials Processing Technology, 111, 210-213.

DOI: 10.1016/s0924-0136(01)00522-2

Google Scholar

[3] J.W. Xie, P. Fox, W. O'Neill, C.J. Sutcliffe (2005) Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels, Journal of Materials Processing Technology, 170, 516-523.

DOI: 10.1016/j.jmatprotec.2005.05.055

Google Scholar

[4] T H C Childs, C Hauser, and M Badrossamay (2007) Further studies in selective laser melting of stainless and tool steel powders, International Journal of Machine Tools and Manufacture, 47, 779-784.

DOI: 10.1016/j.ijmachtools.2006.09.013

Google Scholar

[5] K.A. Chiang, Y.C. Chen (2005) Laser surface hardening of H13 steel in the melt case, Materials Letters, 59, 1919-(1923).

DOI: 10.1016/j.matlet.2005.02.026

Google Scholar

[6] R. Colaco, R. Vilar (2005) On the influence of retained austenite in the abrasive wear behavior of a laser surface melted tool steel, Wear, 258, 225-231.

DOI: 10.1016/j.wear.2004.09.029

Google Scholar

[7] J. Kusinski, A. Cias, T.M. Pieczonka, A.B. Smith, A Rakowska (1997) Wear properties of T15 PM HSS made indexable inserts after laser surface melting, Journal of Materials Processing Technology, 64, 239-246.

DOI: 10.1016/s0924-0136(96)02573-3

Google Scholar

[8] Y. Sun, S. Hanaki, H. Uchida, H. Sunada and N. Tsujii (2004) Fatigue behavior and fractography of laser-processed hot work tool steel', Vacuum, 13, 655-660.

DOI: 10.1016/j.vacuum.2003.12.161

Google Scholar

[9] C.T. Kwok, K.H. Lo, W.K. Chan, F.T. Cheng, H.C. Man. (2003) Effect of processing conditions on the corrosion performance of laser surface-melted AISI 440C martensitic stainless steel, Surface and Coatings Technology, 166, 221-230.

DOI: 10.1016/s0257-8972(02)00782-x

Google Scholar

[10] C.T. Kwok, K.I. Leong, F.T. Cheng, H.C. Man (2003) Microstructural and corrosion characteristics of laser surface-melted plastics mold steels, Materials Science and Engineering A, 357, 94-103.

DOI: 10.1016/s0921-5093(03)00228-4

Google Scholar

[11] A. Conde, R. Colaço, R. Vilar and J. de Damborenea (2000) Corrosion behaviour of steels after laser surface melting, Materials & Design, 21, 441-445.

DOI: 10.1016/s0261-3069(00)00037-6

Google Scholar

[12] Roland W. Ohse, Laser application in high temperature materials, Pure &Appl. Chem., Vol. 60, No. 3, pp.309-322, (1988).

Google Scholar

[13] P.R. Strutt, Mat. Sci. Engg. , 44, (1980).

Google Scholar

[14] Information on http: /cartech. ides. com/datasheet. aspx?i=103&e=263&c=techart, June 20, (2011).

Google Scholar

[15] P.R. Strutt, J. Lemay and A. Tauqir, New Phenomenon in Electron Beam Glazing, Rapidly Solidified Metastable Materials, North Holland New York, (1983).

DOI: 10.1557/proc-28-87

Google Scholar

[16] A. Tauqir, P.R. Strutt and P. G. Klemens A Model for Cellular Segregation in a Steel Generated by Fluid Flow Vorticity, Material Science & Engineering 94, pp.251-258, (1987).

DOI: 10.1016/0025-5416(87)90340-5

Google Scholar

[17] B. A. Ahmed, et al. to be published.

Google Scholar

[18] Information on http: /www. csun. edu/~bavarian/Courses/MSE%20227/Labs/9-Corrosion. pdf, June 20, (2011).

Google Scholar