[1]
Y. Sun, S. Hanaki, H. Uchida, H. Sunada and N. Tsujii, (2003) Rapid effect of hot work tool steel by laser-melting process, Journal. Mater. Sci. Technol. 19, 91-93.
DOI: 10.2355/isijinternational.43.127
Google Scholar
[2]
F. Abe, K. Osakada, M. Shiomi, K. Uematsu and M. Matsumoto (2001) The manufacturing of hard tools from metallic powders by selective laser melting, Journal of Materials Processing Technology, 111, 210-213.
DOI: 10.1016/s0924-0136(01)00522-2
Google Scholar
[3]
J.W. Xie, P. Fox, W. O'Neill, C.J. Sutcliffe (2005) Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels, Journal of Materials Processing Technology, 170, 516-523.
DOI: 10.1016/j.jmatprotec.2005.05.055
Google Scholar
[4]
T H C Childs, C Hauser, and M Badrossamay (2007) Further studies in selective laser melting of stainless and tool steel powders, International Journal of Machine Tools and Manufacture, 47, 779-784.
DOI: 10.1016/j.ijmachtools.2006.09.013
Google Scholar
[5]
K.A. Chiang, Y.C. Chen (2005) Laser surface hardening of H13 steel in the melt case, Materials Letters, 59, 1919-(1923).
DOI: 10.1016/j.matlet.2005.02.026
Google Scholar
[6]
R. Colaco, R. Vilar (2005) On the influence of retained austenite in the abrasive wear behavior of a laser surface melted tool steel, Wear, 258, 225-231.
DOI: 10.1016/j.wear.2004.09.029
Google Scholar
[7]
J. Kusinski, A. Cias, T.M. Pieczonka, A.B. Smith, A Rakowska (1997) Wear properties of T15 PM HSS made indexable inserts after laser surface melting, Journal of Materials Processing Technology, 64, 239-246.
DOI: 10.1016/s0924-0136(96)02573-3
Google Scholar
[8]
Y. Sun, S. Hanaki, H. Uchida, H. Sunada and N. Tsujii (2004) Fatigue behavior and fractography of laser-processed hot work tool steel', Vacuum, 13, 655-660.
DOI: 10.1016/j.vacuum.2003.12.161
Google Scholar
[9]
C.T. Kwok, K.H. Lo, W.K. Chan, F.T. Cheng, H.C. Man. (2003) Effect of processing conditions on the corrosion performance of laser surface-melted AISI 440C martensitic stainless steel, Surface and Coatings Technology, 166, 221-230.
DOI: 10.1016/s0257-8972(02)00782-x
Google Scholar
[10]
C.T. Kwok, K.I. Leong, F.T. Cheng, H.C. Man (2003) Microstructural and corrosion characteristics of laser surface-melted plastics mold steels, Materials Science and Engineering A, 357, 94-103.
DOI: 10.1016/s0921-5093(03)00228-4
Google Scholar
[11]
A. Conde, R. Colaço, R. Vilar and J. de Damborenea (2000) Corrosion behaviour of steels after laser surface melting, Materials & Design, 21, 441-445.
DOI: 10.1016/s0261-3069(00)00037-6
Google Scholar
[12]
Roland W. Ohse, Laser application in high temperature materials, Pure &Appl. Chem., Vol. 60, No. 3, pp.309-322, (1988).
Google Scholar
[13]
P.R. Strutt, Mat. Sci. Engg. , 44, (1980).
Google Scholar
[14]
Information on http: /cartech. ides. com/datasheet. aspx?i=103&e=263&c=techart, June 20, (2011).
Google Scholar
[15]
P.R. Strutt, J. Lemay and A. Tauqir, New Phenomenon in Electron Beam Glazing, Rapidly Solidified Metastable Materials, North Holland New York, (1983).
DOI: 10.1557/proc-28-87
Google Scholar
[16]
A. Tauqir, P.R. Strutt and P. G. Klemens A Model for Cellular Segregation in a Steel Generated by Fluid Flow Vorticity, Material Science & Engineering 94, pp.251-258, (1987).
DOI: 10.1016/0025-5416(87)90340-5
Google Scholar
[17]
B. A. Ahmed, et al. to be published.
Google Scholar
[18]
Information on http: /www. csun. edu/~bavarian/Courses/MSE%20227/Labs/9-Corrosion. pdf, June 20, (2011).
Google Scholar