[1]
Q. M. Zhang, Research on Ceramic Matrix Composites (CMC) for Aerospace Aplications, Advanced Materials Research. 284(2011) 324-329.
DOI: 10.4028/www.scientific.net/amr.284-286.324
Google Scholar
[2]
G. Voronin, T. Zerda, J. Qian, Y. Zhao, D. He and S. Dub, Diamond-SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders, DRM. 12(9) (2003) 1477-1481.
DOI: 10.1016/s0925-9635(03)00176-6
Google Scholar
[3]
J. Gubicza, T. Ungar, Y. Wang, et al., Microstructure of diamond-SiC nanocomposites determined by X-ray line profile analysis, DRM. 15(9) (2006) 1452-1456.
DOI: 10.1016/j.diamond.2005.10.064
Google Scholar
[4]
G. Voronin, T. Zerda, J. Gubicza, T. Ungar and S. Dub, Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique, JMatR. 19(9) (2004) 2703-2707.
DOI: 10.1557/jmr.2004.0345
Google Scholar
[5]
K. Mlungwane, M. Herrmann and I. Sigalas, The low-pressure infiltration of diamond by silicon to form diamond-silicon carbide composites, J. Eur. Ceram. Soc. 28(1) (2008) 321-326.
DOI: 10.1016/j.jeurceramsoc.2007.06.010
Google Scholar
[6]
S. Nauyoks, M. Wieligor, T. W. Zerda, et al., Stress and dislocations in diamond-SiC composites sintered at high pressure, high temperature conditions, Composites Part A. 40(5) (2009) 566-572.
DOI: 10.1016/j.compositesa.2009.02.006
Google Scholar
[7]
O. Ohtaka, M. Shimono, N. Ohnishi, et al., HIP production of a diamond/SiC composite and application to high-pressure anvils, PEPI. 143(2004) 587-591.
DOI: 10.1016/j.pepi.2003.05.003
Google Scholar
[8]
S. Leparoux, C. Diot, A. Dubach, et al., Synthesis of silicon carbide coating on diamond by micro- wave heating of diamond and silicon powder: A heteroepitaxial growth, Scripta Mater. 57(7) (2007) 595-597.
DOI: 10.1016/j.scriptamat.2007.06.016
Google Scholar
[9]
X. Jiang and C. P. Klages, Synthesis of diamond/β-SiC composite films by microwave plasma assisted chemical vapor deposition, ApPhL. 61(14) (1992) 1629-1631.
DOI: 10.1063/1.108458
Google Scholar
[10]
N. Patibandla and W. B. Hillig, Processing of molybdenum disilicide using a new reactive vapor infiltration technique, J. Am. Ceram. Soc. 76(6) (1993) 1630-1634.
DOI: 10.1111/j.1151-2916.1993.tb03955.x
Google Scholar
[11]
S. Adjerid, J. Flaherty, M. Shephard, et al., Adaptive numerical techniques for reactive vapor infiltration, Presented at The 18th Ann. Conf. Compo. Adv. Ceram. Mater. (New York, USA, 1994).
Google Scholar
[12]
S. Adjerid, J. E. Flaherty, W. Hillig, et al., Modeling and the adaptive solution of reactive vapor infiltration problems, Modell. Simul. Mater. Sci. Eng. 3(6) (1995) 737-752.
DOI: 10.1088/0965-0393/3/6/001
Google Scholar
[13]
J. M. Qian, J. P. Wang and Z. H. Jin, Preparation and properties of porous microcellular SiC ceramics by reactive infiltration of Si vapor into carbonized basswood, MCP. 82(3) (2003) 648-653.
DOI: 10.1016/s0254-0584(03)00330-4
Google Scholar
[14]
E. Vogli, H. Sieber and P. Greil, Biomorphic SiC-ceramic prepared by Si-vapor phase infiltration of wood, J. Eur. Ceram. Soc. 22(14-15) (2002) 2663-2668.
DOI: 10.1016/s0955-2219(02)00131-0
Google Scholar
[15]
H. Zhou, S. Dong, X. Zhang, et al., Mechanical and tribological properties of 3D carbon fiber rein- forced SiC composites prepared by liquid silicon infiltration, Key Eng. Mater. 434-435 (2010) 28-32.
DOI: 10.4028/www.scientific.net/kem.434-435.28
Google Scholar
[16]
J. M. Qian, Z. H. Jin and X. W. Wang, Porous SiC ceramics fabricated by reactive infiltration of gaseous silicon into charcoal, Ceram. Int. 30(6) (2004) 947-951.
DOI: 10.1016/j.ceramint.2003.11.001
Google Scholar
[17]
A. Kaindl, Cellular SiC ceramics from wood, PhD thesis (University of Erlangen-Nuernberg, ErlangenNuernberg, Germany, 2000).
Google Scholar
[18]
J. Qian, J. Wang, Z. Jin and G. Qiao, Preparation of macroporous SiC from Si and wood powder using infiltration-reaction process, Mater. Sci. Eng., A. 358(1-2) (2003) 304-309.
DOI: 10.1016/s0921-5093(03)00281-8
Google Scholar