Photoluminescence of ZrO2-ZnO Hybrid Nanotube Arrays Produced by Electrodeposition

Article Preview

Abstract:

Highly ordered ZrO2 nanotube (NT) arrays were fabricated by anodization in organic electrolyte containing NH4F. The NTs have an opened porous structure at the top end. A facile electro-deposition technique was used to prepare ZnO quantum dots (QDs) in the pores of the ZrO2 NTs. Characterizations of SEM, XRD, HR-TEM were performed on the NTs. The results confirmed the formation of single-phase wurtzite ZnO nanoparticles in the ZrO2 NTs with a size around 20 nm. Photoluminescence (PL) spectra proved that the ZnO QDs coating had strongly enhanced the PL signal for blue (366nm) and green (503nm) light emissions of the hybrid NT arrays. That maybe arose from structure-dependent defects and oxygen vacancy in the hybrid layers.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1484-1487

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.P. Gorman, H.U. Anderson, Processing of Composite Thin Film Solid Oxide Fuel Cell Structures, J. Am. Ceram. Soc. 88 (2005) 1747-53.

Google Scholar

[2] X.M. Liu, G.Q. Lu, Z.F. Yan, Nanocrystalline zirconia as catalyst support in methanol synthesis, Appl. Catal. A: General 279 (2005) 241-45.

Google Scholar

[3] D. Pietrogiacomi, D. Sannino, A. Magliano, The catalytic activity of CuSO4/ZrO2 for the selective catalytic reduction of NOx with NH3 in the presence of excess O2, Appl. Catal. B 36 (2002) 217-30

DOI: 10.1016/s0926-3373(01)00310-1

Google Scholar

[4] O. K. Tan, W. Cao, Y. Hu, W. Zhu, Nanostructured oxides by high-energy ball milling technique: application as gas sensing materials, Solid State Ionics 172 (2004) 309-16.

DOI: 10.1016/j.ssi.2004.02.042

Google Scholar

[5] Y. Zhou, K. Sasaki, T. Kawae and A. Morimoto, Thickness dependence of the structural and dielectric properties of epitaxial ZrO2 films grown by limited reaction sputtering, J. Phys. D: Appl. Phys. 42 (2009) 205406.

DOI: 10.1088/0022-3727/42/20/205406

Google Scholar

[6] C.H. Lee, H.K. Kim, H. S. Choi, Phase transformation and bond coat oxidation behavior of plasma-sprayed zirconia thermal barrier coating, Surf. Coat. Tech. 124 (2000) 1-12.

DOI: 10.1016/s0257-8972(99)00517-4

Google Scholar

[7] J. Isasi-Marín, M. Pérez-Estébanez, C. Díaz-Guerra, Structural, magnetic and luminescent characteristics of Pr3+-doped ZrO2 powders synthesized by a sol–gel method, J. Phys. D: Appl. Phys. 42 (2009) 075418.

DOI: 10.1088/0022-3727/42/7/075418

Google Scholar

[8] J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, P. Mulvaney, Luminescence and Amplified Stimulated Emission in CdSe–ZnS-Nanocrystal-Doped TiO2 and ZrO2 Waveguides, Adv. Funct. Mater. 17( 2007) 1654.

DOI: 10.1002/adfm.200600955

Google Scholar

[9] R. Reisfeld, Prospects of sol–gel technology towards luminescent materials, Opt. Mater. 16(2001) 1-7.

Google Scholar

[10] T. Jüstel, H. Nikol, C. Ronda, New Developments in the Field of Luminescent Materials for Lighting and Displays, Angew. Chem. Int. Edn. 37(1998) 3084-103.

DOI: 10.1002/(sici)1521-3773(19981204)37:22<3084::aid-anie3084>3.0.co;2-w

Google Scholar

[11] R. Reisfeld, M. Zelner, A. Patra, Fluorescence study of zirconia films doped by Eu3+, Tb3+ and Sm3+ and their comparison with silica films, J. Alloy. Comp. 300-301 (2000) 147.

DOI: 10.1016/s0925-8388(99)00714-8

Google Scholar

[12] B. Julian, R. Corberan, E. Cordoncillo, P. Escribano B. Viana, C. Sanchez, One-pot synthesis and optical properties of Eu3+-doped nanocrystalline TiO2 and ZrO2. Nanotechnology 16 (2005) 2707.

DOI: 10.1088/0957-4484/16/11/040

Google Scholar

[13] M. Morita, H. Rau, H. Fujii, Photoluminescence of CdS : Mn2+ and Eu3+ nanoparticles dispersed in zirconia sol–gel films, J. Lumin. 87(2000) 478-85.

DOI: 10.1016/s0022-2313(99)00215-x

Google Scholar

[14] L. Gao, X. Song, Controlled preparation and spectral analysis of nanorod and nanocluster ZrO2, Mater. Chem. Phy. 110 (2008) 52-55.

DOI: 10.1016/j.matchemphys.2008.01.006

Google Scholar

[15] R.R. Piticescu, C. Monty, D. Taloi, Hydrothermal synthesis of zirconia nanomaterials, J. Euro. Ceram. Soc. 21 (2001) 2057-60.

DOI: 10.1016/s0955-2219(01)00171-6

Google Scholar

[16] L. Guo, J. Zhao, X. Wang, Structure and Bioactivity of Zirconia Nanotube Arrays Fabricated by Anodization, Int. J. Appl. Ceram. Technol. 6 (2009) 636-41.

Google Scholar

[17] S.C. Lyu, Y. Zhang, H. Ruh et a, Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires, Chem. Phys. Lett. 363 (2002) 134–38.

DOI: 10.1016/s0009-2614(02)01145-4

Google Scholar

[18] M.H. Huang, S. Mao, H. Feick, et al., ZnO Microrods Photodeposited with Au–Ag Nanoparticles: Synthesis, Characterization and Application, Science 292 (2001) 1897.

Google Scholar

[19] L. Cao, S. Huang, S. Lu, J. Lin, Effect of layer thickness on the luminescence properties of ZnS/CdS/ZnS quantum dot quantum well, J. Colloid Interf. Sci. 284 (2005) 516-20

DOI: 10.1016/j.jcis.2004.10.066

Google Scholar

[20] L. Kumari, G. H Du, W. Z. Li et al, Synthesis, microstructure and optical characterization of zirconium oxide nanostructures, Ceram. Inter. 35 (2009) 2401-8.

Google Scholar