[1]
C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube, Nano Lett. 5(2005)1842-1846.
DOI: 10.1021/nl051044e
Google Scholar
[2]
M. Fuhrer, H. Park, and P. L. McEuen, Single-walled carbon nanotube electronics, IEEE Trans.Nanaotechnol.1(2002) 78-85.
DOI: 10.1109/tnano.2002.1005429
Google Scholar
[3]
J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, and J. Han, Bottom-up approach for carbon nanotubes interconnects, Appl. Phys. Lett. 82(2003) 2491-2493.
DOI: 10.1063/1.1566791
Google Scholar
[4]
J. K. Holt, H. G. Park, Y. Wang, et al., Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes, Science 312(2006) 1034-1037.
DOI: 10.1126/science.1126298
Google Scholar
[5]
Y. J. Jung, S. Kar, S.Talapatra, et al., Aligned Carbon Nanotube−Polymer Hybrid Architectures for Diverse Flexible Electronic Applications, Nano Lett. 6(2006)413-418.
DOI: 10.1021/nl052238x
Google Scholar
[6]
T. W. Ebbesen and P. M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature 358(1992) 220-222.
DOI: 10.1038/358220a0
Google Scholar
[7]
T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smallery, Self-Assembly of Tubular Fullerenes, J. Phys. Chem. 99(1995) 10694-10697.
DOI: 10.1021/j100027a002
Google Scholar
[8]
M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H. W. Kroto, and A. Sarkar, Pyrolytic carbon nanotubes from vapor-grown carbon fibers, Carbon 33(1995) 873-881.
DOI: 10.1016/0008-6223(95)00016-7
Google Scholar
[9]
H. Ago, S. Imamura, T. Okazaki, et al., CVD Growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy, J. Phys. Chem. B 109(2005) 10035-10041.
DOI: 10.1021/jp050307q
Google Scholar
[10]
N. T. Alvarez, A. Orbaek, A. R. Barron, et al., Dendrimer-assisted self-assembled monolayer of iron nanoparticles for vertical array carbon nanotube growth, Appl. Mater. Interf. 2(2010) 15-18.
DOI: 10.1021/am900666w
Google Scholar
[11]
A. Okamoto, H. Shinohara,Control of diameter distribution of single-walled carbon nanotubes using the zeolite-CCVD method at atmospheric pressure, Carbon43(2005)431-436.
DOI: 10.1016/j.carbon.2004.10.006
Google Scholar
[12]
I. J. Kim, W. Zhao, X. Fan, et al., Effect of the TEOS/Al(i-pro)3mol ratio in the composition on the crystal morphology of zeolites, Journal of Ceramic Research and Processing 11(2010) 158-163.
Google Scholar
[13]
S. Karakoulia, L. Jankovic, K. Dimos, D. Gournis, and K. triadafyllidis, Formation of carbon nanotubes on iron/cobat-modified zeolites: Effect of zeolite framework/pore structure and method of modification, Stud. Surf.Sci. Catal. 158(2005)391-398.
DOI: 10.1016/s0167-2991(05)80364-7
Google Scholar
[14]
J. S. Lee, J. H. Kim, Y. J. Lee, N. C. Jeong, and K. B. Yoon, Manual Assembly of Microcrystal Monolayers on Substrates, Angew. Chem. Int. 46(2007)3087-3090.
DOI: 10.1002/anie.200604367
Google Scholar
[15]
K. B. Yoon,Organization of Zeolite Microcrystals for Production of Functional Materials, Acc. Chem. Res. 40(2007)29-40.
DOI: 10.1021/ar000119c
Google Scholar
[16]
S. Yasuda, D. N. Futaba, T. Yamada, et al., Improved and Large Area Single-Walled Carbon Nanotube Forest Growth by Controlling the Gas Flow direction, ACS Nano 3(2009) 4164-4170.
DOI: 10.1021/nn9007302
Google Scholar
[17]
L. D. Shao, G. Tobias, C. G. Salzmann, et al., Removal of amorphous carbon for the efficient sidewall functionalization of single-walled carbon nanotubes, Chem. Commun.(2007)5090-5092.
DOI: 10.1039/b712614j
Google Scholar
[18]
A. C. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B 64(2001) 075414(1-13).
DOI: 10.1103/physrevb.64.075414
Google Scholar
[19]
A. C. Ferrari and J. Robertson, Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond, Phys. Rev. B63(2001) 121405(1-4).
Google Scholar