Effects of Methane Cold Plasma in Sisal Fibers

Article Preview

Abstract:

One of the main problems in using vegetable fibers as reinforcement in aggressive cement matrix is the penetration of alkaline products in the porous structure of the filaments, making them very fragile with the time. In this sense a series of physical and chemical methods of surface modification has been used in order to improve its characteristics. The plasma surface modification technique is a physical method surface modification that utilizes ionized gas at low pressure to change the chemical nature and the substrate surface morphology of both organic and inorganic materials without changing their intrinsic properties. This is considered an environmentally friendly process without generation of contamination and has a low operating cost compared to some chemical (such as silane based) treatments. In the present study, the sisal fibers were treated with methane plasma generated by direct electric current during 10, 20 and 30 min with gas flow of 5 cm3/s and current of 0.10 A. The study presents some mechanical, physics and chemical characteristics of sisal fiber after being subjected to treatment with methane cold plasma. The results presented indicate that treatment with methane cold plasma induced changes in sisal fibers at all times of exposure to treatment (10, 20 and 30 min). However, the major changes in structural and mechanical components may be seen in fibers treated with 10 min of exposure to plasma.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

458-468

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.D. Tolêdo Filho, K. Ghavami, G.L. Egland, K. Scrivener, Development of vegetable fibre–mortar composites of improved durability, Cement & Concrete Composites 25 (2003) 185–196.

DOI: 10.1016/s0958-9465(02)00018-5

Google Scholar

[2] K. Bilba, M. -A. Arsene, Silane treatment of bagasse fiber for reinforcement of cementitious composites, Composites: Part A 39 (2008) 1488–1495.

DOI: 10.1016/j.compositesa.2008.05.013

Google Scholar

[3] G.H.D. Tonoli, U.P. Rodrigues Filho, H. Savastano Jr., J. Bras, M.N. Belgacem, F.A. Rocco Lahr, Cellulose modified fibres in cement based composites, Composites: Part A 40 (2009) 2046–(2053).

DOI: 10.1016/j.compositesa.2009.09.016

Google Scholar

[4] J. George, M.S. Sreekala, S. Thomas, A review on interface modification and characterization of natural fiber reinforced plastic composites, Polymer Engineering and Science 41 (2001) 1471-1485.

DOI: 10.1002/pen.10846

Google Scholar

[5] K.G. Satyanarayana, J.L. Guimarães, F. Wypych, Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications, Composites: Part A 38 (2007) 1694 – 1709.

DOI: 10.1016/j.compositesa.2007.02.006

Google Scholar

[6] V. Tserki, N.E. Zafeiropoulos, F. Simon, C. Panayiotou, A study of the effect of acetylation and propionylation surface treatments on natural fibres, Composites: Part A 36 (2005) 1110 – 1118.

DOI: 10.1016/j.compositesa.2005.01.004

Google Scholar

[7] F. Tomczak, T.H.D. Sydenstricker, K.G. Satyanarayana, Studies on lignocellulosic fibers of Brazil. Part II: morphology and properties of Brazilian coconut fibers, Composites: Part A 38 (2007) 1710 – 1721.

DOI: 10.1016/j.compositesa.2007.02.004

Google Scholar

[8] A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibres, Prog. Polym. Sci. 24 (1999) 221–274.

Google Scholar

[9] O.R.R.F. da SILVA; W.M. Coutinho, Cultivo do sisal, Embrapa Algodão, Sistemas de produção, n. 5, dez, 2006, Campina Grande: Embrapa, 2006. (online version, in Portuguese).

DOI: 10.21475/ajcs.19.13.01.p1157

Google Scholar

[10] D.G. HARRISON, Subprodutos del sisal como alimentos para los ruminantes, Revista Mundial de Zootecnia, 49 (1984) pp.25-31. (In Portuguese).

Google Scholar

[11] C.A.S. Hill, H.P.S. Abdul Khalil, M.D. Hale, A study of the potential of acetylation to improve the properties of plant fibres. Industrial Crops and Products. 8 (1998), pp.53-63.

DOI: 10.1016/s0926-6690(97)10012-7

Google Scholar

[12] R.M. Rowell, Property enhanced natural fiber composite materials based on chemical modification. Science and Technology of Polymers and Advanced Materials. New York, (1998).

DOI: 10.1007/978-1-4899-0112-5_63

Google Scholar

[13] P.H. Raven, R.F. Evert, S.E. Eichhorn, Biologia vegetal, seventh ed, Guanabara, (2007).

Google Scholar

[14] N. Morsing, Densification of wood – the influence of hygrothermal treatment on compression of beech perpendicular to the grain, Tesis (Doctorate), Technical University of Denmark, (2000).

Google Scholar

[15] B. Yang, C.E. Wyman, Characterization of the degree of polymerization of xylooligomers produced by flowthrough hydrolysis of pure xylan and corn stover with water, Bioresource Technology 99 (2008) 5756–5762.

DOI: 10.1016/j.biortech.2007.10.054

Google Scholar

[16] H.E. Gram, Durability of natural fibres in concrete, Stockholm, (1983).

Google Scholar

[17] B.J. Mohr, H. Nanko, K.E. Kurtis, Durability of kraft pulp fiber–cement composites to wet/dry cycling, Cement & Concrete Composites 27 (2005) 435–448.

DOI: 10.1016/j.cemconcomp.2004.07.006

Google Scholar

[18] A.R. Martin, Caracterização e modificação de fibras de sisal por plasma a frio visando aplicação em compósito poliméricos, Tese (Doutorado), Universidade Federal de São Carlos, (2001).

DOI: 10.1590/s0104-14282001000200006

Google Scholar

[19] A. Bentur, S. Mindess, Fibre reinforced cementitious composites. London and New York: Elsevier Applied Science, (1990).

Google Scholar

[20] M.A. Aziz, P. Paramasivam, S.C. Lee, Natural fibre reinforced composite building materials for low-income. Symposium on Building Materials for Low-Income Housing, Bangkok, Thailand, (1987).

Google Scholar

[21] L.A. de C. Motta, Melhoria do desempenho de fibras de coco e sisal para reforço de matrizes cimentícias através de tratamento termomecânico e impregnação de resinas. Tese (Doutorado). Escola Politécnica. Universidade de São Paulo. São Paulo, 2005. (In Portuguese).

DOI: 10.11606/9786589190103

Google Scholar

[22] V. Agopyan, H. Savastano Jr, Compósitos reforçados com fibras vegetais e suas aplicações, in: W. J Freire, A.L.B. Beraldo (coord. ) Tecnologias e materiais alternativos de construção, Campinas: Editora da Unicamp, 2003. cap. 5, pp.121-144.

Google Scholar

[23] P.K. Metha, P.J.M. Monteiro. Concreto: estrutura, propriedades e materiais. São Paulo: PINI, (1994).

Google Scholar

[24] H.E. Gram, Durability of natural fibres in concrete, in: R.N. Swamy (ed) Natural fibre reinforced cement and concrete. Concrete and technology design, 5, Glasgow, Blackie, (1988).

Google Scholar

[25] S.A.S. Akers, J.B. Studinka, Ageing behavior of cellulose fibre cement composites in natural weathering and accelerated tests. The International Journal of Cement Composites and Lightweight Concrete 11 (1989) 93-97.

DOI: 10.1016/0262-5075(89)90119-x

Google Scholar

[26] V.M. John, V. Agopyan, Materiais reforçados com fibras vegetais. Anais.. Simpósio Internacional sobre Materiais Reforçados com Fibras para Construção Civil. São Paulo: EPUSP, (1993).

DOI: 10.47749/t/unicamp.1999.176238

Google Scholar

[27] B. Felekoglu, K. Tosun, B. Baradan, A comparative study on the flexural performance of plasma treated polypropylene fiber reinforced cementitius composites. Journal of Materials Processing Technology. 209 (2009) 5133-5144.

DOI: 10.1016/j.jmatprotec.2009.02.015

Google Scholar

[28] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: a review. Spectrochimica Acta Part B. v. 61, pp.2-30, (2006).

DOI: 10.1016/j.sab.2005.10.003

Google Scholar

[29] C. Alves Jr, Nitretação a plasma: fundamentos e aplicações, first Ed, Universidade Federal do Rio Grande do Norte, 2001. (In Portuguese).

DOI: 10.17533/udea.iee.v31n1a19

Google Scholar

[30] M.J. Shenton, G.C. Stevens, Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments. J. Phys. D: Appl. Phys. 34 (2001) 2761-2768, (2001).

DOI: 10.1088/0022-3727/34/18/308

Google Scholar

[31] F. Navarro, F. Dávalos, R. González-Cruz, F. López-Dellamary, R. Marínquez, J. Turrado, J. Ramos, Sisal chemo-thermomechanical pulp paper with a strongly hydrophobic surface coating produced by a pentafluorophenyldimethylsilane cold plasma. Journal of Applied Polymer Science. 112, (2009).

DOI: 10.1002/app.29419

Google Scholar

[32] I. Aydin, C. Demirkir, Activation of spruce wood surfaces by plasma treatment after long terms of natural surface inactivation, Plasma Chemistry and Plasma Processing, 30 (2010), 697-706.

DOI: 10.1007/s11090-010-9244-5

Google Scholar

[33] B. Bhushan, B.K. Gupta, Handbook of tribology-materials, coatings e surface treatments, McGraw-Hill, (1991).

Google Scholar

[34] R. D´Agostino, Plasma deposition, treatment, and etching of polymers, San Diego, Academic Press, (1993).

Google Scholar

[35] A.T. Carvalho, R.A.M. Carvalho, M.L.P. Silva, N.R. Demarquette, O.B.G. Assis, Tratamento de grãos por técnica de plasma a frio, Biotecnologia Ciência e Desenvolvimento, 28 (2002). (In Portuguese).

Google Scholar

[36] A.R. Martin, Caracterização e modificação de fibras de sisal por plasma a frio visando aplicação em compósito poliméricos. Tese (Doutorado). Universidade Federal de São Carlos, 2001. (In Portuguese.

DOI: 10.1590/s0104-14282001000200006

Google Scholar

[37] K.P. Sao, B.K. Samantaray, S. Bhattacherjee, X ray study of cristallinity and disorder in rami fiber. J. App. Polymer Science. v. 52, pp.1687-1694, (1994).

DOI: 10.1002/app.1994.070521203

Google Scholar

[38] F.F.M. Lopes, G.T. Araújo, J.W.B. do Nascimento, G, T.S. Adelha, V.R. da. Silva, Estudos dos efeitos da acetilação em fibras de sisal. Revista Brasileira de Engenharia Agrícola e Ambiental. v. 14, pp.783-788, 2010 (In Portuguese).

DOI: 10.1590/s1415-43662010000700015

Google Scholar

[39] D.O. Freitas, Modificação superficial do tecido 100% algodão tratado com plasma. Dissertação (Mestrado). Universidade Federal do Rio Grande do Norte. Natal, (2009).

DOI: 10.24873/j.rpemd.2019.05.446

Google Scholar

[40] J.J.G. Van Soest, H. Tournois, D. De Vit, J.F.G. Vliegenhart, Short range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier transform IR spectroscopy. Carbohydrate Research 279, 201 (1995).

DOI: 10.1016/0008-6215(95)00270-7

Google Scholar

[41] Bergo, P. , Carvalho, R. A., Sobral, P.J.A. Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packaging Technology and Science, v. 1, pp.1-2, (2007).

Google Scholar