[1]
R.D. Tolêdo Filho, K. Ghavami, G.L. Egland, K. Scrivener, Development of vegetable fibre–mortar composites of improved durability, Cement & Concrete Composites 25 (2003) 185–196.
DOI: 10.1016/s0958-9465(02)00018-5
Google Scholar
[2]
K. Bilba, M. -A. Arsene, Silane treatment of bagasse fiber for reinforcement of cementitious composites, Composites: Part A 39 (2008) 1488–1495.
DOI: 10.1016/j.compositesa.2008.05.013
Google Scholar
[3]
G.H.D. Tonoli, U.P. Rodrigues Filho, H. Savastano Jr., J. Bras, M.N. Belgacem, F.A. Rocco Lahr, Cellulose modified fibres in cement based composites, Composites: Part A 40 (2009) 2046–(2053).
DOI: 10.1016/j.compositesa.2009.09.016
Google Scholar
[4]
J. George, M.S. Sreekala, S. Thomas, A review on interface modification and characterization of natural fiber reinforced plastic composites, Polymer Engineering and Science 41 (2001) 1471-1485.
DOI: 10.1002/pen.10846
Google Scholar
[5]
K.G. Satyanarayana, J.L. Guimarães, F. Wypych, Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications, Composites: Part A 38 (2007) 1694 – 1709.
DOI: 10.1016/j.compositesa.2007.02.006
Google Scholar
[6]
V. Tserki, N.E. Zafeiropoulos, F. Simon, C. Panayiotou, A study of the effect of acetylation and propionylation surface treatments on natural fibres, Composites: Part A 36 (2005) 1110 – 1118.
DOI: 10.1016/j.compositesa.2005.01.004
Google Scholar
[7]
F. Tomczak, T.H.D. Sydenstricker, K.G. Satyanarayana, Studies on lignocellulosic fibers of Brazil. Part II: morphology and properties of Brazilian coconut fibers, Composites: Part A 38 (2007) 1710 – 1721.
DOI: 10.1016/j.compositesa.2007.02.004
Google Scholar
[8]
A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibres, Prog. Polym. Sci. 24 (1999) 221–274.
Google Scholar
[9]
O.R.R.F. da SILVA; W.M. Coutinho, Cultivo do sisal, Embrapa Algodão, Sistemas de produção, n. 5, dez, 2006, Campina Grande: Embrapa, 2006. (online version, in Portuguese).
DOI: 10.21475/ajcs.19.13.01.p1157
Google Scholar
[10]
D.G. HARRISON, Subprodutos del sisal como alimentos para los ruminantes, Revista Mundial de Zootecnia, 49 (1984) pp.25-31. (In Portuguese).
Google Scholar
[11]
C.A.S. Hill, H.P.S. Abdul Khalil, M.D. Hale, A study of the potential of acetylation to improve the properties of plant fibres. Industrial Crops and Products. 8 (1998), pp.53-63.
DOI: 10.1016/s0926-6690(97)10012-7
Google Scholar
[12]
R.M. Rowell, Property enhanced natural fiber composite materials based on chemical modification. Science and Technology of Polymers and Advanced Materials. New York, (1998).
DOI: 10.1007/978-1-4899-0112-5_63
Google Scholar
[13]
P.H. Raven, R.F. Evert, S.E. Eichhorn, Biologia vegetal, seventh ed, Guanabara, (2007).
Google Scholar
[14]
N. Morsing, Densification of wood – the influence of hygrothermal treatment on compression of beech perpendicular to the grain, Tesis (Doctorate), Technical University of Denmark, (2000).
Google Scholar
[15]
B. Yang, C.E. Wyman, Characterization of the degree of polymerization of xylooligomers produced by flowthrough hydrolysis of pure xylan and corn stover with water, Bioresource Technology 99 (2008) 5756–5762.
DOI: 10.1016/j.biortech.2007.10.054
Google Scholar
[16]
H.E. Gram, Durability of natural fibres in concrete, Stockholm, (1983).
Google Scholar
[17]
B.J. Mohr, H. Nanko, K.E. Kurtis, Durability of kraft pulp fiber–cement composites to wet/dry cycling, Cement & Concrete Composites 27 (2005) 435–448.
DOI: 10.1016/j.cemconcomp.2004.07.006
Google Scholar
[18]
A.R. Martin, Caracterização e modificação de fibras de sisal por plasma a frio visando aplicação em compósito poliméricos, Tese (Doutorado), Universidade Federal de São Carlos, (2001).
DOI: 10.1590/s0104-14282001000200006
Google Scholar
[19]
A. Bentur, S. Mindess, Fibre reinforced cementitious composites. London and New York: Elsevier Applied Science, (1990).
Google Scholar
[20]
M.A. Aziz, P. Paramasivam, S.C. Lee, Natural fibre reinforced composite building materials for low-income. Symposium on Building Materials for Low-Income Housing, Bangkok, Thailand, (1987).
Google Scholar
[21]
L.A. de C. Motta, Melhoria do desempenho de fibras de coco e sisal para reforço de matrizes cimentícias através de tratamento termomecânico e impregnação de resinas. Tese (Doutorado). Escola Politécnica. Universidade de São Paulo. São Paulo, 2005. (In Portuguese).
DOI: 10.11606/9786589190103
Google Scholar
[22]
V. Agopyan, H. Savastano Jr, Compósitos reforçados com fibras vegetais e suas aplicações, in: W. J Freire, A.L.B. Beraldo (coord. ) Tecnologias e materiais alternativos de construção, Campinas: Editora da Unicamp, 2003. cap. 5, pp.121-144.
Google Scholar
[23]
P.K. Metha, P.J.M. Monteiro. Concreto: estrutura, propriedades e materiais. São Paulo: PINI, (1994).
Google Scholar
[24]
H.E. Gram, Durability of natural fibres in concrete, in: R.N. Swamy (ed) Natural fibre reinforced cement and concrete. Concrete and technology design, 5, Glasgow, Blackie, (1988).
Google Scholar
[25]
S.A.S. Akers, J.B. Studinka, Ageing behavior of cellulose fibre cement composites in natural weathering and accelerated tests. The International Journal of Cement Composites and Lightweight Concrete 11 (1989) 93-97.
DOI: 10.1016/0262-5075(89)90119-x
Google Scholar
[26]
V.M. John, V. Agopyan, Materiais reforçados com fibras vegetais. Anais.. Simpósio Internacional sobre Materiais Reforçados com Fibras para Construção Civil. São Paulo: EPUSP, (1993).
DOI: 10.47749/t/unicamp.1999.176238
Google Scholar
[27]
B. Felekoglu, K. Tosun, B. Baradan, A comparative study on the flexural performance of plasma treated polypropylene fiber reinforced cementitius composites. Journal of Materials Processing Technology. 209 (2009) 5133-5144.
DOI: 10.1016/j.jmatprotec.2009.02.015
Google Scholar
[28]
C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: a review. Spectrochimica Acta Part B. v. 61, pp.2-30, (2006).
DOI: 10.1016/j.sab.2005.10.003
Google Scholar
[29]
C. Alves Jr, Nitretação a plasma: fundamentos e aplicações, first Ed, Universidade Federal do Rio Grande do Norte, 2001. (In Portuguese).
DOI: 10.17533/udea.iee.v31n1a19
Google Scholar
[30]
M.J. Shenton, G.C. Stevens, Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments. J. Phys. D: Appl. Phys. 34 (2001) 2761-2768, (2001).
DOI: 10.1088/0022-3727/34/18/308
Google Scholar
[31]
F. Navarro, F. Dávalos, R. González-Cruz, F. López-Dellamary, R. Marínquez, J. Turrado, J. Ramos, Sisal chemo-thermomechanical pulp paper with a strongly hydrophobic surface coating produced by a pentafluorophenyldimethylsilane cold plasma. Journal of Applied Polymer Science. 112, (2009).
DOI: 10.1002/app.29419
Google Scholar
[32]
I. Aydin, C. Demirkir, Activation of spruce wood surfaces by plasma treatment after long terms of natural surface inactivation, Plasma Chemistry and Plasma Processing, 30 (2010), 697-706.
DOI: 10.1007/s11090-010-9244-5
Google Scholar
[33]
B. Bhushan, B.K. Gupta, Handbook of tribology-materials, coatings e surface treatments, McGraw-Hill, (1991).
Google Scholar
[34]
R. D´Agostino, Plasma deposition, treatment, and etching of polymers, San Diego, Academic Press, (1993).
Google Scholar
[35]
A.T. Carvalho, R.A.M. Carvalho, M.L.P. Silva, N.R. Demarquette, O.B.G. Assis, Tratamento de grãos por técnica de plasma a frio, Biotecnologia Ciência e Desenvolvimento, 28 (2002). (In Portuguese).
Google Scholar
[36]
A.R. Martin, Caracterização e modificação de fibras de sisal por plasma a frio visando aplicação em compósito poliméricos. Tese (Doutorado). Universidade Federal de São Carlos, 2001. (In Portuguese.
DOI: 10.1590/s0104-14282001000200006
Google Scholar
[37]
K.P. Sao, B.K. Samantaray, S. Bhattacherjee, X ray study of cristallinity and disorder in rami fiber. J. App. Polymer Science. v. 52, pp.1687-1694, (1994).
DOI: 10.1002/app.1994.070521203
Google Scholar
[38]
F.F.M. Lopes, G.T. Araújo, J.W.B. do Nascimento, G, T.S. Adelha, V.R. da. Silva, Estudos dos efeitos da acetilação em fibras de sisal. Revista Brasileira de Engenharia Agrícola e Ambiental. v. 14, pp.783-788, 2010 (In Portuguese).
DOI: 10.1590/s1415-43662010000700015
Google Scholar
[39]
D.O. Freitas, Modificação superficial do tecido 100% algodão tratado com plasma. Dissertação (Mestrado). Universidade Federal do Rio Grande do Norte. Natal, (2009).
DOI: 10.24873/j.rpemd.2019.05.446
Google Scholar
[40]
J.J.G. Van Soest, H. Tournois, D. De Vit, J.F.G. Vliegenhart, Short range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier transform IR spectroscopy. Carbohydrate Research 279, 201 (1995).
DOI: 10.1016/0008-6215(95)00270-7
Google Scholar
[41]
Bergo, P. , Carvalho, R. A., Sobral, P.J.A. Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packaging Technology and Science, v. 1, pp.1-2, (2007).
Google Scholar