Activation Alkaline Waste Kaolin for Fabrication of Building Blocks

Article Preview

Abstract:

In the state of Paraíba, one of the activities of great economic importance is that of the kaolin processing industry. This type of processing generates large amounts of waste that are displayed randomly in the environment, which has attracted attention, because the environmental impact caused by it and the lack of established process of recycling. The University Federal o Paraíba has been developing several research to explore the potential for recycling of industrial waste from Paraíba, mainly waste of kaolin. This research have pointed to the feasibility of using waste as aggregate and pozzolan in the development of mortars use multiple. These wastes have different size fractions, depending on the stage of processing: a sandy (termed in this study of RGC) containing mainly quartz, mica and calcite; and other clay (termed in this study of RFC) is thinner, containing higher amounts of kaolinite. This study aims to evaluate the potential of alkaline activation from waste kaolin (RGC and RFC) by comparing the activation using sodium silicate and hidroxide of calcium. With the objective of studying the potential of waste as a material pozzolanic, it was processing through grinding at 80.000, 60.000, 40.000, 20.000 and 10.000 rotations and with the purpose of evaluating the reactivity of materials, these wastes were calcined at 750°C/2h. For the mechanical characterization was using an equipment universal testing of Shimadzu Servopulser, where it was observed that only RFC, when calcined, developed strength in both activations, and the activated with silicate sodium with higher strength. The RGC, both in the state in natura and calcined did not show satisfactory mechanical strength to the test under the conditions of synthesis used in this research. Thus, the waste RFC's studied in this work has the potential to be used as constituent materials for building blocks in terms of its mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

622-627

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dantas, R. R. Relatório de estágio supervisionado na CAULISA, Indústria de Caulim – S/A, Campina Grande –PB, (1983).

Google Scholar

[2] Dantas, K.C.B.; Nóbrega, A.F.; Ribeiro, P.H.L.C.; Torres, S.M.; Barbosa, N.P. Avaliação do potencial de reciclagem de resíduos do beneficiamento do caulim na construção civil: Mineralogia, índices físicos, cominuição e atividade pozolânica. IAC - BRASIL NOCMAT 2006 - Salvador, BA, Brasil, Octuber 20th – November 01th (2006).

DOI: 10.47749/t/unicamp.2015.949162

Google Scholar

[3] Nóbrega, A.F.; Dantas, K.C.B.; Oliveira, M.P.; Torres, S.M.; Barbosa, N.P. Avaliação do desempenho de Argamassas com o uso de Rejeito de Caulim Industrial como Material de Substituição do Cimento Portland, IAC-NOCMAT 2005–Rio Rio de Janeiro, RJ, Brazil, November 11th - November 15th (2005).

DOI: 10.1590/s1415-43662006000200034

Google Scholar

[4] Nóbrega, A.F.; Dantas, K.C.B.; Torres, S.M.; Sobrinho Jr, A.S.; Barbosa, N.P. Resíduos de Caulim em Argamassas de Múltiplo Uso: Efeito da Granulometria no Desempenho Mecânico, IAC- BRASIL NOCMAT 2006 - Salvador, BA, Brasil, 20 de Outubro a 01 de Novembro de (2006).

DOI: 10.29381/0103-8559/2020300187-91

Google Scholar

[5] Nóbrega, A.F.; Oliveira, M.P.; Torres, S.M.; Polari Filho, R.S.;A.S.; Barbosa, N.P.; Araújo, J.L. Potencial do Uso do Rejeito de Caulim Industrial como Material de Substituição de Cimento Portland. In: 47o Congresso Brasileiro do Concreto, 2005, Recife. Anais do 47o Congresso Brasileiro do Concreto, 2005. v. v. p.

DOI: 10.29327/140860

Google Scholar

[6] Nóbrega, A.F. Potencial de aproveitamento de resíduos de caulim paraibano para desenvolvimento de argamassas de múltiplo uso. Dissertação de Mestrado, Programa de Pós-graduação em Engenharia Urbana da Universidade Federal da Paraíba, (2007).

DOI: 10.1590/s0103-21002009000100001

Google Scholar

[7] ABNT, NBR 7217-Agregado – Determinação da composição Granulométrica. Associação Brasileira de Normas Técnicas, Rio de Janeiro, (1994).

Google Scholar

[8] Alves, S M - Desenvolvimento de Compósitos Duráveis e Resistentes Através da Substituição Parcial do Cimento por Resíduo da Indústria Cerâmica. Dissertação de Mestrado, Programa de Engenharia Mecânica, Universidade Federal da Paraíba, João Pessoa, Set. (2002).

DOI: 10.17648/coen-2018-89457

Google Scholar

[9] ABNT, NBR 5751 - Índice de atividade pozolânica com a cal. Associação Brasileira de Normas Técnicas, Rio de Janeiro, (1992).

Google Scholar

[10] ABNT, NBR 7215-Determinação da resistência à compressão - Cimento Portland. Associação Brasileira de Normas Técnicas, Rio de Janeiro, (1996).

Google Scholar

[11] ABNT, NBR 13276-Determinação do teor de água para obtenção do índice de consistência padrão - Argamassa para assentamento de paredes e tetos. Associação Brasileira de Normas Técnicas, (1995).

DOI: 10.47749/t/unicamp.1978.48411

Google Scholar

[12] DAVIDOVITS, J. Geopolymers: inorganic polymeric new materials. Journal of Thermal Analysis 37, 1633 (1991).

DOI: 10.1007/bf01912193

Google Scholar

[13] DAVIDOVITS, J. Materials for the third millennium. Think geopolymer and geosynthesis. Disponível em: <http: /www. geopolymer. org/applications. html>. Acesso em: 04 Set (2004).

Google Scholar

[14] DAVIDOVITS, J. Synthetic mineral polymer compound of silicoaluminates family and preparation process. US Patent 4. 472. 199 (1984). 18 Set (1984).

Google Scholar

[15] PALOMO, A.; GRUTZECK, M.W.; BLANCO, M.T. Alkali-actived fly ashes. A cement for the future. Cement and Concrete Research 29, 1323 (1999).

DOI: 10.1016/s0008-8846(98)00243-9

Google Scholar

[16] XU, H.; VAN DEVENTER, J.S.J. The geology merisation of alumino-silicate minerals. International Journal Mineral Processing 59, 247 (2000).

DOI: 10.1016/s0301-7516(99)00074-5

Google Scholar

[17] BARBOSA, V.F.F.; Mackenzie, K.J.D.; THAUMATURGO, C. Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. International Journal of Inorganic Materials 2, 309 (2000).

DOI: 10.1016/s1466-6049(00)00041-6

Google Scholar

[18] BEAUDOIN, J.J. Properties of Portland cement paste reinforced with mica flakes. Cement Concrete Research. 13, pg. 156-160, (1999).

DOI: 10.1016/0008-8846(83)90097-2

Google Scholar

[19] VAN JAARSVELD, J.G.S.; VAN DEVENTER, J.S.J. Effect of the alkali metal activator on theproperties of fly ash – based Geopolymers. Industrial and Engineering Chemistry Research. 38, 3932(1999).

DOI: 10.1021/ie980804b

Google Scholar