[1]
A. Abhat, Low temperature latent heat thermal energy storage: heat storage materials, J. Solar. Energy. 30 (1983) 313-332.
DOI: 10.1016/0038-092x(83)90186-x
Google Scholar
[2]
M.M. Farid, A.M. Khudhair, S.A.K. Razack, et al, A review on phase change energy storage: materials and applications, J. Energy Convers. Manage. 45 (2004) 1597-1615.
DOI: 10.1016/j.enconman.2003.09.015
Google Scholar
[3]
M.M. Farid, A.K. Mohamed, Effect of Natural convection on the process of melting and solidification of paraffin wax, J. Chem. Eng. Commun. 57 (1987) 297-316.
DOI: 10.1080/00986448708960492
Google Scholar
[4]
M.M. Farid, A. Kanzawa, Thermal performance of a heat storage module using PAMs with different melting temperatures-mathematical modeling, J. J. Solar. Energy. Eng. 111 (1989) 152-157.
DOI: 10.1115/1.3268301
Google Scholar
[5]
F. Wang, G. Maidment, J. Missenden, et al, A review of research concerning the use of PCMs in air conditioning and refrigeration engineering, J. Adv. Build. Technol. 2 (2002) 1273-128.
DOI: 10.1016/b978-008044100-9/50158-3
Google Scholar
[6]
V.V. Tyagi, D. Buddhi, PCM thermal storage in buildings: a state of art, J. Renew. Sustain. Energy. Rev. 11 (2007) 1146-1166.
DOI: 10.1016/j.rser.2005.10.002
Google Scholar
[7]
D. Saihi, I. Vroman, S. Giraud, et al, Microencapsulation of ammonium phosphate with a polyurethane shell. Part II. Interfacial polymerization technique, J. React. Funct. Polym. 66 (2006) 1118-1125.
DOI: 10.1016/j.reactfunctpolym.2006.02.001
Google Scholar
[8]
H.Y. Lee, C.A. Kim, W.H. Jang, et al, Synthesis and electrorheological characteristics of micro-encapsulated polyaniline particles with melamine-formaldehyde resins, J. Polymer. 42 (2001) 8277-8283.
DOI: 10.1016/s0032-3861(01)00342-1
Google Scholar
[9]
G. Sun, Z. Zhang, Mechanical properties of melamine-formaldehyde microcapsules, J. J. Microencapsul. 18 (2001) 593-602.
Google Scholar
[10]
G. Sun, Z. Zhang, Mechanical strength of microcapsules made of different wall materials, J. Int. J. Pharm. 242 (2002) 307-311.
Google Scholar
[11]
B. Boh, E. Knez, M. Staresinic, Microencapsulation of higher hydrocarbon phase change materials by in situ polymerization, J. J. Microencapsul. 22 (2005) 715-735.
DOI: 10.1080/02652040500162139
Google Scholar
[12]
W.J. Luo, W. Yang, S. Jiang, et al, Microencapsulation of decabromodiphenyl ether by in situ polymerization: Preparation and characterization, J. Polym. Degrad. Stab. 92 (2007) 1359-1364.
DOI: 10.1016/j.polymdegradstab.2007.03.004
Google Scholar
[13]
F. Salaun, E. Devaux, S. Devaux, et al, Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization, J. Chem. Eng. J. 155 (2009) 457-465.
DOI: 10.1016/j.cej.2009.07.018
Google Scholar
[14]
Q.Y. Yan, C. Liang, L. Zhang, Experimental study on the thermal storage performance of paraffin mixtures used in the phase change wall, J. Sol. Energy Mater. Sol. Cells. 92 (2008) 1526-1532.
DOI: 10.1016/j.solmat.2008.07.002
Google Scholar
[15]
S. Fabien, V. Isabelle, Influence of core materials on thermal properties of melamine-formaldehyde microcapsules, J. Euro. Poly. J. 44 (2008) 849-860.
DOI: 10.1016/j.eurpolymj.2007.11.018
Google Scholar
[16]
X.X. Zhang, X.M. Tao, K.L. Yick, et al, Structure and thermal stability of microencapsulated phase-change materials, J. Collid. Polym. Sci. 88 (2004) 330-336.
DOI: 10.1007/s00396-003-0925-y
Google Scholar