Electrochemical Performance of the Li3V2(PO4)3/C Synthesized from V2O3

Article Preview

Abstract:

Li3V2(PO4)3/C with monoclinic structure were prepared respectively by V2O5 and low valence vanadium oxide V2O3 via solid state reaction. The structure, particle size and morphology of the powders were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed the pure phase Li3V2(PO4)3 with the highest performance can be synthesized at 750 degree by using V2O3 vanadium source. The capacity retention had nearly 100% after 40-cycles at 0.5 C. It has relative capacity retention and higher specific capacity, comparing with V2O5 vanadium source at the optimal synthesis temperature. The electrochemical impedance spectra (EIS) manifests the capacity degradation was mainly caused by the increased solution impedance and electrochemical impedance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-146

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Drozda, G.Q. Liu, R.S. Liu, et al., Synthesis, electrochemical properties, and characterization of LiFePO4/C composite by a two-source method, J. Alloys Compd. 487 (2009) 58-63.

Google Scholar

[2] X. D. Yan, G.L. Yang, J. Liu, et al., An effective and simple way to sythesize LiFePO4/C composite, Electrochimi. Acta 54 (2009) 5770-5774.

DOI: 10.1016/j.electacta.2009.05.048

Google Scholar

[3] H.P. Liu, Z.X. Wang, X.H. Li, et al., Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method, J. Power Sources 184 (2008) 469-472.

DOI: 10.1016/j.jpowsour.2008.02.084

Google Scholar

[4] H.C. Shin, W.I. Cho, H. Jang, Electrochemial properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black, J. Electrochimi. Acta 52 (2006) 1472-1476.

DOI: 10.1016/j.electacta.2006.01.078

Google Scholar

[5] M.S. Bhuvaeswari, N.N. Bramnik, D. Ensling, Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries, J. Power Sources 180 (2008) 553-560.

DOI: 10.1016/j.jpowsour.2008.01.090

Google Scholar

[6] X.D. Guo, B.H. Zhong, H. Liu, The preparation of LiFePO4/C cathode by a modified carbon-coated method, J. Electrochem. Soc. 156 (2009) A787-A790.

Google Scholar

[7] C.S. Sun, Z. Zhou, Z.G. Xu, Improved high-rate charge/discharge performances of LiFePO4/C via V-doping, J. Power Sources 193 (2009) 841-845.

DOI: 10.1016/j.jpowsour.2009.03.061

Google Scholar

[8] H. Liu, Q. Cao, L.J. Fu, Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries, J. Electrochem. Commun. 8 (2006) 1553-1557.

DOI: 10.1016/j.elecom.2006.07.014

Google Scholar

[9] D. Wang, H. Li, S. Shi, Improving the rate performance of LiFePO4 by Fe-site doping, J. Electrochimi. Acta 50 (2005) 2955-2958.

DOI: 10.1016/j.electacta.2004.11.045

Google Scholar

[10] J. Xu, G. Chen, Y.J. Teng, Electrochemical properties of LiAlxFe1-3xPO4/C prepared by a solution method, J. Solid State Commun. 147 (2009) 414-418.

Google Scholar

[11] J.J. Chen, X. Jia, Q.J. She, et al., The preparation of nano-sulfur/MWCNTs and its electrochemical performance, J. Electrochimi. Acta, 55 (2010) 8062-8066.

DOI: 10.1016/j.electacta.2010.01.069

Google Scholar

[12] J. Bark, M.Y. Saidi, J.L. Swolyer, A carbothermal reduction method for the preparation of electroactive materials for lithium on applications, J. Electrochem. Soc. 150 (2003) A684-A688.

DOI: 10.1149/1.1568936

Google Scholar

[13] M.Y. Saidi, J. Barker, H. Huang, Performance characteristics of lithium vanadium phosphate as a cathode materials for lithium-ion batteries, J. Power Sources, 119-121 (2003) 266-272.

DOI: 10.1016/s0378-7753(03)00245-3

Google Scholar

[14] X.H. Rui, Y. Jin, X.Y. Feng, et al., A comparative study on the low-temperature performance of LiFePO4/C and cathodes for lithium-ion batteries, J. Power Sources 196 (2011) 2109-2114

DOI: 10.1016/j.jpowsour.2010.10.063

Google Scholar

[15] M.Y. Saidi, J. Barker, H. Huang, Electrochemical properties of lithium vanadium phosphate as cathode materials for lithium-ion batteries, J. Electrochem. Solid State Lett. 5 (2002) A149-A151.

DOI: 10.1149/1.1479295

Google Scholar

[16] S.Q. Liu, L.X. Tang, K.L. Huang, Preparation of cathode material Li3V2(PO4)3 by carbonthermal method, Chinese Journal of Power Source 30 (2006) 473-476.

Google Scholar

[17] L.Y. Wang, X.C. Zhou, Y.L. Guo, Synthesis and performance of carbon-coated Li3V2(PO4)3 cathode materials by a low temperature solid-state reaction, J. Power Sources 195 (2010) 2844-2850.

DOI: 10.1016/j.jpowsour.2009.11.056

Google Scholar

[18] J. Wang, X. Zhang, J. Liu, Long-term cyclability and high-rate capability of Li3V2(PO4)3/C cathode material using PVA as carbon source, J. Electrochimi. Acta 55 (2010) 6879-6884.

DOI: 10.1016/j.electacta.2010.05.077

Google Scholar

[19] L. Wang, X. Jiang, X. Li, Rapid preparation and electrochemical behavior of carbon-coated Li3V2(PO4)3 from wet coordination, J. Electrochimi. Acta 55 (2010) 5057-5062.

DOI: 10.1016/j.electacta.2010.03.062

Google Scholar

[20] C.S. Dai, F.P. Wang, J.T. Liu, Preparation and performance study of Li3V2(PO4)3 by sol-gel method, J. orga. Chem. 24 (2008) 381-387

Google Scholar