Effect of Lithium Bis(oxalate)Borate-Based Electrolyte on the Performance of LiNi0.5Mn1.5O4 for High Voltage Lithium-Ion Batteries

Article Preview

Abstract:

LiNi0.5Mn1.5O4 is a promising 5 V class anode material for high power applications, however, before applying in lithium-ion batteries, it is necessary to find more appropriate electrolyte systems to exert the perfect electrochemical performance of LiNi0.5Mn1.5O4. In this paper, the electrochemical performances of LiBOB-propylene carbonate (PC)/dimethyl carbonate (DMC) electrolyte are investigated. It shows high oxidation potentials (>5.5 V) and satisfactory conductivities, When used in LiNi0.5Mn1.5O4/Li cells, compared to the cell with the electrolyte system of LiPF6-ethylene carbonate (EC)/dimethyl carbonate (DMC) electrolyte, LiBOB-PC/DMC electrolyte exhibit several advantages, such as more stable cycle performance, higher discharge voltage plateau (>4.64 V), higher coulomb efficiency, and higher mean voltage (4.55 V).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-159

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104 (2004) 4303-4418.

DOI: 10.1021/cr030203g

Google Scholar

[2] J.G. Li, Y.Y. Zhang, J.J. Li, L. Wang, X.M. He, J. Gao, AlF3 coating of LiNi0.5Mn1.5O4 for high-performance Li-ion batteries, Ionics. 17 (2011) 671-675.

DOI: 10.1007/s11581-011-0617-4

Google Scholar

[3] T.Y. Yang, K.N. Sun, Z.Y. Lei, N.Q. Zhang, Y. Lang, The influence of Li sources on physical and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries, J. Solid-State Electrochem. 15 (2011) 391-397.

DOI: 10.1007/s10008-010-1103-z

Google Scholar

[4] F. Azeez, P.S. Fedkiw, Conductivity of LiBOB-based electrolyte for lithium-ion batteries, J. Power Sources. 195 (2010) 7627-7633.

DOI: 10.1016/j.jpowsour.2010.06.021

Google Scholar

[5] K. Xu, S.S. Zhang, B.A. Poese, T.R. Jow, Lithium bis(oxalato)borate stabilizes graphite anode in propylene carbonate, Solid-State Lett. 5 (2002) A259-A262.

DOI: 10.1149/1.1510322

Google Scholar

[6] K. Xu, S.S. Zhang, T.R. Jow, W. Xu, CA Angell, LiBOB as salt for lithium-ion batteries: a possible solution for high temperature operation, Electrochem. Solid-State Lett. 5 (2002) A26-A29.

DOI: 10.1149/1.1426042

Google Scholar

[7] K. Xu, S.S. Zhang, T.R. Jow, Formation of the graphite/electrolyte interface by lithium bis(oxalato)borate, Electrochem. Solid-State Lett. 6 (2003) A117-A120.

DOI: 10.1149/1.1568173

Google Scholar

[8] M. Wachtler, M. Wohlfahrt-Mehrens, S. Ströbele, J. Panitz, U. Wietelmann, The behaviour of graphite, carbon black, and Li4Ti5O12 in LiBOB-based electrolytes, J. Applied Electrochemistry. 36 (2006) 1999-1206.

DOI: 10.1007/s10800-006-9175-2

Google Scholar

[9] B.T. Yu, W.H. Qiu, F.S. Li, G.X. Xu, The electrochemical characterization of lithium bis(oxalato)borate synthesized by a novel method, Electrochem. Solid-State Lett. 9 (2006) A1-A4.

DOI: 10.1149/1.2128122

Google Scholar

[10] S.Y. Li, P.H. Ma, S. T. Song, Q.D. Ren, Conductivity of LiBOB in various ternary solvent blends and the electrochemical performance of LiBOB-PC/EMC/DMC used in Li/MCMB and LiFePO4/Li cells, Russ. J. Electrochem. 44 (2008) 1144-1148.

DOI: 10.1134/s1023193508100091

Google Scholar