Theoretical Study of the Filling Fraction Limit of Fe-Substituted Ba-Filled Skutterudite BayFe4xCo4-4xSb12

Article Preview

Abstract:

Theoretical study of the filling fraction limit (FFL) of the Fe-substituted Ba-filled skutterudite was carried out via first principle method calculations. The lattice constant of BayFe4xCo4-4xSb12 increases with the Ba filling fraction under fixed Fe content while it does not simply increases with Fe content under fixed Ba filling fraction. The FFL is determined by the competition between the formation of filled skutterudite phases and the corresponding secondary phases. The FFL of Ba in the Fe-substituted CoSb3 skutterudites increases monotonically from 37.5% with Fe content of 0 to 100% with Fe content of ~50%. The most stable composition of the BayFe4xCo4-4xSb12is expected to be BayFe2.8Co1.2Sb12.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-173

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Sales, D. Mandrus, and R. K. Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, Science, 272, 1996: pp.1325-1328

DOI: 10.1126/science.272.5266.1325

Google Scholar

[2] G. A. Slack, in Handbook of Thermoelectrics, edited by D. M. Rowe, 1995, CRC Press, Boca Raton, FL: p.407

Google Scholar

[3] W. Zhang, X. Shi, Z.G. Mei, Y. Xu, L.D. Chen, J. Yang, and G.P. Meisner, Predication of an ultrahigh filling fraction for K in CoSb3, Applied Physics Letters, 2006. 89(11): p.112105

DOI: 10.1063/1.2348760

Google Scholar

[4] Z. Mei, W. Zhang, L. Chen, and J. Yang, Filling fraction limits for rare-earth atoms in CoSb3: An ab initio approach, Phys. Rev. B, 2006. 74:p.153202

Google Scholar

[5] R. Liu, X. Chen, P. Qiu, J. Liu, J. Yang, X. Huang, and L. Chen, Low thermal conductivity and enhanced thermoelectric performance of Gd-filled skutterudites. J. Appl. Phys., 2011, 109(2): p.023719.

DOI: 10.1063/1.3533743

Google Scholar

[6] P. E. Blochl, Projector augmented-wave method, Phys. Rev. B, 1994, 50:pp.17953-17979

DOI: 10.1103/physrevb.50.17953

Google Scholar

[7] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77: pp.3865-3868

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[8] G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54:pp.11169-11186

DOI: 10.1103/physrevb.54.11169

Google Scholar

[9] H. J. Monkhorst and J. D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B, 1976, 13:pp.5188-5192

DOI: 10.1103/physrevb.13.5188

Google Scholar