Electronic Structure and Half-Metallic Properties of Cubic Perovskite BaRu1-XTixO3 System

Article Preview

Abstract:

The electronic structures of the titanium-doped cubic perovskite ruthenates BaRu1-xTixO3 with x=0.125, 0.25, 0.375, 0.5, 0.625, 0.75, and 0.875 are investigated using the spin-polarized density functional theory within the pseudopotential plane wave method. It is found that a half-metallic phase appears in the 0.75- and 0.875-doped systems, and the origin of half-metallic property is the decrease of t2g bandwidth of Ru 4d states with the increase in x. In addition, the energy gap of BaRu0.25Ti0.75O3 is as large as 1.7 eV at the Fermi level in the up-spin density of states, which suggests a stable half-metallic phase can be obtained in the present systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-178

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A. de Groot, F.M. Mueller, P.G. van Engen, New class of materials: half-metallic ferromagnets, Phys. Rev. Lett. 50 (1983) 2024-2027.

DOI: 10.1103/physrevlett.50.2024

Google Scholar

[2] K. Maiti, Bandwidth controlled half-metallicity in a ferromagnetic metal: Ab initio calculations, Phys. Rev. B 77 (2008) 212407.

DOI: 10.1103/physrevb.77.212407

Google Scholar

[3] P.A. Lin, H.T. Jeng, C.S. Hsue, Electronic structure and orbital ordering of SrRu1−xTixO3: GGA+U investigations, Phys. Rev. B 77 (2008) 085118.

Google Scholar

[4] K. Maiti, Role of covalency in the ground-state properties of perovskite ruthenates: A first-principles study using local spin density approximations, Phys. Rev. B 73 (2006) 235110.

DOI: 10.1103/physrevb.73.235110

Google Scholar

[5] G.T. Wang, M.P. Zhang, Z.X. Yang, Orbital orderings and optical conductivity of SrRuO3 and CaRuO3: first-principles studies, J. Phys.: Condens. Matter 21 (2009) 265602.

DOI: 10.1088/0953-8984/21/26/265602

Google Scholar

[6] C.Q. Jin, J.S. Zhou, J.B. Goodenough, High-pressure synthesis of the cubic perovskite BaRu03 and evolution of ferromagnetism in ARu03 (A=Ca, Sr, Ba) ruthenates, PNAS 105 (2008) 7115-7119.

DOI: 10.1073/pnas.0710928105

Google Scholar

[7] P.E. Blochl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[8] John P. Perdew, J.A. Chevary, S.H. Vosko, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992) 6671-6687.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[9] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[10] S. Sanna, C. Thierfelder, S. Wippermann, Barium titanate ground- and excited-state properties from first-principles calculations, Phys. Rev. B 83 (2011) 054112.

DOI: 10.1103/physrevb.83.054112

Google Scholar

[11] J. Kim, J.Y. Kim, B.G. Park, Photoemission and x-ray absorption study of the electronic structure of SrRu1−xTixO3, Phys. Rev. B 73 (2006) 235109.

Google Scholar