Reaction Kinetic in the CVD Process of Pyrocarbon Deposition from Propylene Pyrolysis

Abstract:

Article Preview

The deposition rate(r) of pyrocarbon deposited from propylene pyrolysis has been explored as a function of residence time (tr=0.2-5s) and deposition temperature (T=1173-1333K) at a constant pressure of 6 kPa. The main feature of r vs. curves was that the deposition rate, firstly increase and then decrease with the residence time. A qualitative chemical model was developed and the kinetic domains were defined for the formation of pyrocarbon. The model could explain the change of deposition rates and kinetic transition due to the occurrence of two different families of ultimate carbon precursor.

Info:

Periodical:

Edited by:

Huayu Zhang

Pages:

193-196

Citation:

C. Y. Lu et al., "Reaction Kinetic in the CVD Process of Pyrocarbon Deposition from Propylene Pyrolysis", Key Engineering Materials, Vol. 519, pp. 193-196, 2012

Online since:

July 2012

Export:

Price:

$41.00

[1] G. Savage, Carbon-carbon composites, Chapman and Hall, London, 1993: p.85.

[2] R. Naslain and F. Langlais, In tailoring multiphase and composite ceramics, Mater. Sci. Res. 20 (1986) 145-164.

DOI: https://doi.org/10.1007/978-1-4613-2233-7_12

[3] G.L. Vignoles, F. Langlais and A. Mouchon, CVD and CVI of pyrocarbon from various Precursors, Surface & Coatings Technology. 188/189 (2004) 241- 249.

DOI: https://doi.org/10.1016/j.surfcoat.2004.08.036

[4] A. Becker and K.J. Hüttinger, Chemistry and kinetics of chemical vapour deposition of pyrocarbon - ii, pyrocarbon deposition from ethylene, acetylene and 1, 3 - butadiene in the low temperature regime, Carbon. 36 (1998) 177-199.

DOI: https://doi.org/10.1016/s0008-6223(97)00175-9

[5] A. Becker and K.J. Hüttinger, Chemistry and kinetics of chemical vapour deposition of pyrocarbon - iii, pyrocarbon deposition from propylene and benzene in the low temperature regime, Carbon, 36 (1998) 201-211.

DOI: https://doi.org/10.1016/s0008-6223(97)00176-0

[6] K. Norinaga and K.J. Hüttinger, Kinetics of surface reactions in carbon deposition from light hydrocarbons, Carbon, 41 (2003) 1509-1514.

DOI: https://doi.org/10.1016/s0008-6223(03)00097-6

[7] S. Vaidyaraman, W.J. Lackey, P. K. Agrawal and et al, Carbon/carbon processing by forced flow-thermal gradient chemical vapor infiltration using propylene, Carbon. 34 (1996) 347-362.

DOI: https://doi.org/10.1016/0008-6223(95)00190-5

[8] J. Xie, X . Wang, J. Deng and L. Zhang, Pore size control of pitch-based activated carbon fibers by pyrolytic deposition of propylene, Appl. Surf. Sci. 250 (2005) 152-160.

DOI: https://doi.org/10.1016/j.apsusc.2004.12.044

[9] X. Yao, K. Su, J. Deng, Gas-phase reaction thermodynamics im preparation of pyrolytic carbon by propylene pyrolysis, Computational Materials Science. 40 (2007) 504-524.

DOI: https://doi.org/10.1016/j.commatsci.2007.02.002

[10] H. Li, A. Li, R. Bai, K. Li, Carbon fiber reinforced silicon carbide matrix composite exhibits excellent mechanical properties, Carbon. 43 (2005) 2937-2950.

[11] S. Vaidyaraman, W.J. Lackey, P.K. Agrawal, T.L. Starr, 1-D Model for Forced Vapor Infiltration Process for Carbon, Carbon. 34 (1996) 1123-1133.

DOI: https://doi.org/10.1016/0008-6223(96)00086-3

[12] A, Becker, K.J. Hüttinger, Chemistry and kinetic of chemical vapor deposition of pyrocabon—V influece of reactor volume /deposition surface area ratio, Carbon. 36 (1998) 225-232.

DOI: https://doi.org/10.1016/s0008-6223(97)00178-4

[13] O. Feron, F. Langlais, R. Naslain, J. Thebault, The CVD of pyrocarbon from propane, Carbon. 37 (1999) 1343-1353.

DOI: https://doi.org/10.1016/s0008-6223(98)00329-7