Reaction Kinetic in the CVD Process of Pyrocarbon Deposition from Propylene Pyrolysis

Article Preview

Abstract:

The deposition rate(r) of pyrocarbon deposited from propylene pyrolysis has been explored as a function of residence time (tr=0.2-5s) and deposition temperature (T=1173-1333K) at a constant pressure of 6 kPa. The main feature of r vs. curves was that the deposition rate, firstly increase and then decrease with the residence time. A qualitative chemical model was developed and the kinetic domains were defined for the formation of pyrocarbon. The model could explain the change of deposition rates and kinetic transition due to the occurrence of two different families of ultimate carbon precursor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-196

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Savage, Carbon-carbon composites, Chapman and Hall, London, 1993:p.85

Google Scholar

[2] R. Naslain and F. Langlais, In tailoring multiphase and composite ceramics, Mater. Sci. Res. 20 (1986) 145-164.

DOI: 10.1007/978-1-4613-2233-7_12

Google Scholar

[3] G.L. Vignoles, F. Langlais and A. Mouchon, CVD and CVI of pyrocarbon from various Precursors, Surface & Coatings Technology. 188/189 (2004) 241- 249.

DOI: 10.1016/j.surfcoat.2004.08.036

Google Scholar

[4] A. Becker and K.J. Hüttinger, Chemistry and kinetics of chemical vapour deposition of pyrocarbon - ii, pyrocarbon deposition from ethylene, acetylene and 1,3 - butadiene in the low temperature regime, Carbon. 36 (1998) 177-199.

DOI: 10.1016/s0008-6223(97)00175-9

Google Scholar

[5] A. Becker and K.J. Hüttinger, Chemistry and kinetics of chemical vapour deposition of pyrocarbon - iii, pyrocarbon deposition from propylene and benzene in the low temperature regime, Carbon, 36 (1998) 201-211.

DOI: 10.1016/s0008-6223(97)00176-0

Google Scholar

[6] K. Norinaga and K.J. Hüttinger, Kinetics of surface reactions in carbon deposition from light hydrocarbons, Carbon, 41 (2003) 1509-1514.

DOI: 10.1016/s0008-6223(03)00097-6

Google Scholar

[7] S. Vaidyaraman, W.J. Lackey, P. K. Agrawal and et al,Carbon/carbon processing by forced flow-thermal gradient chemical vapor infiltration using propylene, Carbon. 34 (1996) 347-362.

DOI: 10.1016/0008-6223(95)00190-5

Google Scholar

[8] J. Xie, X .Wang, J. Deng and L. Zhang, Pore size control of pitch-based activated carbon fibers by pyrolytic deposition of propylene, Appl. Surf. Sci. 250 (2005) 152-160.

DOI: 10.1016/j.apsusc.2018.04.223

Google Scholar

[9] X. Yao, K. Su, J. Deng, Gas-phase reaction thermodynamics im preparation of pyrolytic carbon by propylene pyrolysis, Computational Materials Science. 40 (2007) 504-524.

DOI: 10.1016/j.commatsci.2007.02.002

Google Scholar

[10] H. Li, A. Li, R. Bai, K. Li, Carbon fiber reinforced silicon carbide matrix composite exhibits excellent mechanical properties, Carbon. 43 (2005) 2937-2950.

Google Scholar

[11] S.Vaidyaraman, W.J. Lackey, P.K. Agrawal, T.L. Starr, 1-D Model for Forced Vapor Infiltration Process for Carbon, Carbon. 34 (1996) 1123-1133.

DOI: 10.1016/0008-6223(96)00086-3

Google Scholar

[12] A, Becker, K.J. Hüttinger, Chemistry and kinetic of chemical vapor deposition of pyrocabon—V influece of reactor volume /deposition surface area ratio, Carbon. 36 (1998) 225-232.

DOI: 10.1016/s0008-6223(97)00178-4

Google Scholar

[13] O. Feron, F. Langlais, R. Naslain, J. Thebault, The CVD of pyrocarbon from propane, Carbon. 37 (1999) 1343-1353.

DOI: 10.1016/s0008-6223(98)00329-7

Google Scholar