Thermoelectric Properties of a Wide–Gap Chalcopyrite Compound AgInSe2

Article Preview

Abstract:

Here we report the thermoelectric properties of a wide–gap chalcopyrite compound AgInSe2, and observed the remarkable improvement in electrical conductivity σ, due to the bandgap (Eg = 1.12 eV) reduction compared to In2Se3. The improvement in σ is directly responsible for the enhancement of thermoelectric figure of merit ZT, though the thermal conductivity is much higher at 500 ~ 724 K. The maximum ZT value is 0.34 at 724 K, increasing by a factor of 4, indicating that this chalcopyrite compound is of a potential thermoelectric candidate if further optimizations of chemical compositions and structure are made.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

188-192

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Poudel, Q. Hao, Y. Ma, et al., Science . 320 (2008) 634.

Google Scholar

[2] J.P. Heremans, V. Jovovic, E.S. Toberer, et al., Science. 321 (2008) 554.

Google Scholar

[3] Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, G. J. Snyder, Nature. 473 (2011) 66.

Google Scholar

[4] B.A. Cook, M.J. Kramer, X. Wei, J.L. Harringa, E.M. Levin, J Appl Phys. 101 (2007) 053715.

Google Scholar

[5] J.S. Rhyee, K.H. Lee, S.M. Lee, et al., Nature. 459 (2009) 965.

Google Scholar

[6] X.Y. Shi, F.Q. Huang, M.L. Liu, L.D. Chen, Appl. Phys. Lett. 94 (2009) 122103.

Google Scholar

[7] Y.C. Watanabe, S.C. Kanako, H. Kawazoe, M. Yamane, Phys. Rev. B 40 (1989) 3133.

Google Scholar

[8] H.L. Peng, C. Xie, D.T. Schoen, Y. Cui, Nanolett. 8 (2008) 1511.

Google Scholar

[9] B.Tell, J.L. Shay, H.M. Kasper, J. Appl. Phys. 43 (1972) 2469.

Google Scholar

[10] J. E.Jaffe and A. Zunger, Phys. Rev. B 29 (1984) 1882.

Google Scholar

[11] T. Colakoğlu, M. Parlak, Appl. Surf. Sci. 254 (2008) 1569.

Google Scholar

[12] J.L. Cui, X.L. Liu, X.J. Zhang, Y.Y. Li and Y. Deng, J. Appl. Phys. 110 (2011) 023708

Google Scholar

[13] J.L. Cui, X.J. Zhang, Y. Deng, et al., Scripta Mater. 64 (2011) 510

Google Scholar

[14] K. Kurosaki, H. Matsumoto, A. Charoenphakdee, et al., Appl. Phys. Lett. 93 (2008) 012101

Google Scholar

[15] D. Bérardan, E. Alleno, C. Godart, et al. J. Appl. Phys. 98 (2005) 33710.

Google Scholar

[16] X.Y. Shi, F.Q. Huang, M. L. Liu, L. D. Chen, Appl. Phys. Lett. 94 (2009) 122103.

Google Scholar

[17] M.L. Liu, I.W. Chen, F. Q. Huang, L.D. Chen, Adv. Mater. 21 (2009) 3808.

Google Scholar