Sintering Additive on the Pore Structure and Mechanical Properties of Si3N4 Ceramic Foam Produced by Protein Coagulation Casting

Article Preview

Abstract:

Silicon nitride (Si3N4) ceramic foam was prepared from water-based Si3N4 slurries via protein coagulation casting method with egg white protein as the foam agent. The open porosity of the as-fabricated ceramic foams was close to 80%, and the compressive strength was about 20 MPa. Further, the content of sintering additive on the phase composition, pore structure and pore size distribution were investigated. Results indicate that with the increasing of sintering aids, more windows appear on the wall of pore and the average size increases. Moreover, Pore size distribution of as-fabricated ceramic not only changes with sintering additive addition but also varies with pore size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-286

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[2] Q. Z. Chen, A.R. Boccaccini, H. B. Zhang, D. Z. Wang, M. J. Edirisinghe, Improved mechanical reliability of bone tissue engineering scaffolds by electrospraying, J. Am. Ceram. Soc. 89 (2006) 1534-1539.

DOI: 10.1111/j.1551-2916.2006.00935.x

Google Scholar

[3] Q. S. Ma, Y. Ma, Z. H. Chen, Fabrication and characterization of nanoporous SiO(2) ceramics via pyrolysis of silicone resin filled with nanometer SiO2 powders, Ceram. Int. 36 (2010) 2269-2272.

DOI: 10.1016/j.ceramint.2010.07.020

Google Scholar

[4] H. Wang, X. D. Li, L. Y. Hong, D. P. Kim, Preparation of phenolic resin derived 3-D ordered macroporous carbon, J. Porous Mat. 13 (2006) 115-121.

DOI: 10.1007/s10934-006-7006-9

Google Scholar

[5] Y. Ma, Q. S. Ma, Z. H. Chen, Low-temperature fabrication and characterization of porous SiC ceramics using preceramic polymer as binder, Rare Metal Mat. Eng. 36 (2007) 531-533.

Google Scholar

[6] K. H.Jack, Review sialons and related nitrogen ceramics, J. Mater. Sci. 11 (1976) 1135-1158.

DOI: 10.1007/bf02396649

Google Scholar

[7] A. J. Pyzik, D.R. Beaman, Microstructure and Properties of Self-Reinforced Silicon Nitride, J. Am. Ceram. Soc. 76 (1993) 2737-2744.

DOI: 10.1111/j.1151-2916.1993.tb04010.x

Google Scholar

[8] P. F. Becher, E. Sun, K. P. Plucknett, K. B. Alexander, C. H. Hsueh, H. T. Lin, S. B. Waters, C. G. Westmoreland, E. S. Kang, K. Hirao, M. E. Brito, Microstructural Design of Silicon Nitride with Improved Fracture Toughness: I, Effects of Grain Shape and Size, J. Am. Ceram. Soc. 81 (1998) 2821-2830.

DOI: 10.1111/j.1151-2916.1998.tb02702.x

Google Scholar

[9] F. L. Riley, Silicon nitride and related materials, J. Am. Ceram. Soc. 83 (2000) 245-265.

Google Scholar

[10] A. R. Studart, U. T. Tonzenbach, E. Tervoort, L. J. Gauckler, Processing routes to macroporous ceramics: a review, J. Am. Ceram. Soc. 89 (2006) 1771-1789.

DOI: 10.1111/j.1551-2916.2006.01044.x

Google Scholar

[11] T. Hao, Q. S. Ma, Effects of exterior gas pressure on the structure and properties of highly porous SiOC ceramics derived from silicone resin, Mater. lett. 66 (2012) 13~15.

DOI: 10.1016/j.matlet.2011.08.051

Google Scholar

[12] T. Hao, Q. S. Ma, Effects of heating rate on the structure and properties of highly porous SiOC ceramic foams derived from silicone resin. Ceram. Int. 38 (2012) 2101-2104.

DOI: 10.1016/j.ceramint.2011.10.048

Google Scholar

[13] M. D. M Innocentini, P. Sepulveda, V. R. Salvini, V. C. Pandolfelli, Permeability and structure of cellular ceramics: a comparison between two preparation techniques, J. Am. Ceram. Soc. 81(1998) 3349-3352.

DOI: 10.1111/j.1151-2916.1998.tb02782.x

Google Scholar

[14] X. He, X. G. Zhou, B. Su, 3D interconnective porous alumina ceramics via direct protein foaming, J. Mater. Lett. 83(2009) 830-832.

DOI: 10.1016/j.matlet.2008.12.021

Google Scholar

[15] L. Yin, H.X. Peng, S. Dhara, L. Yang, B. Su, Natural additives in protein coagulation casting process for improved microstructural controllability of cellular ceramics, Composites: Part B. 40(2009) 638-644.

DOI: 10.1016/j.compositesb.2009.04.016

Google Scholar

[16] I. Garrn, C. Reetz, N. Brandes, L.W. Kroh, H. Schubert, Clot-forming: the use of proteins as binders for producing ceramic foams, Jour. Eur. Ceram. Soc. 24(2004) 579-587.

DOI: 10.1016/s0955-2219(03)00259-0

Google Scholar

[17] X. He, B. Su, X. G. Zhou, J. H. Yang, B. Zhao, X. Y. Wang, G. Z. Yang, Z. H. Tang, H. X. Qiu, Gelcasting of alumina ceramic using an egg white protein binder system, Ceram. Silik.55(2011) 1-7.

Google Scholar

[18] O. Lyckfeldt, J. Brandt, S. Lesca, Protein forming-a novel shaping technique for ceramics, J. Eur. Ceram. Soc. 20 (2000) 2551-2559.

DOI: 10.1016/s0955-2219(00)00136-9

Google Scholar

[19] A. Berthold, H. Schubert, N. Brandes, L. Kroh, R. Miller, Behaviour of BSA and of BSA-derivatives at the air/water interface, Colloids and Surfaces A: Physicochem. Eng. Aspects. 301 (2007) 16-22.

DOI: 10.1016/j.colsurfa.2006.11.054

Google Scholar

[20] Q. Li, X. W. Yin, Effects of phase composition on microstructure and mechanical properties of Lu2O3-doped porous silicon nitride ceramics, J. Mater. Sci. Technol. 27 (2011) 529-533.

DOI: 10.1016/s1005-0302(11)60103-5

Google Scholar

[21] F. Ye, J. Y. Zhang, H.J. Zhang, L. M. Liu, Effect of sintering temperature on microstructure and mechanical properties of highly porous silicon nitride ceramics produced by freeze casting, Mater. Sci. Eng. A. 527(2010):6501-6504.

DOI: 10.1016/j.msea.2010.07.038

Google Scholar