Preparation and Characterization of Ultralow Density Silica Aerogels by Acetonitrile Supercritical Drying

Article Preview

Abstract:

This paper deals with the synthesis of ultralow density silica aerogels using tetramethyl orthosilicate (TMOS) as the precursor via sol-gel process followed by supercritical drying using acetonitrile solvent extraction. Ultralow density silica aerogels with 6 mg/cc of density was made for the molar ratio by this method. The microstructure and morphology of the ultralow density silica aerogels was characterized by the specific surface area, SBET, SEM, and the pore size distribution techniques. The results show that the ultralow density silica aerogel has the high specific surface area of 812m2/g. Thermal conductivities at desired temperatures were analyzed by the transient plane heat source method. Thermal conductivity coefficients of silica aerogel monoliths changed from 0.024 to 0.043W/ (m K) as temperature increased to 400°C, revealed an excellent heat insulation effect during thermal process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-86

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.W. Hrubesh, J. Chemical Industries. 824 (1990) 17.

Google Scholar

[2] S.D. Bhagat, Y.H. Kim, Y.S. Ahn, J.G. Yeo, Appl. Surf. Sci. 253 (2007) 3231.

Google Scholar

[3] M.Reim,W.Korner, J.Manara, S.Korder,M.Arduini-Schuster, H.P. Ebert, J. Fricke Solar Energy 79 (2005) 131.

DOI: 10.1016/j.solener.2004.08.032

Google Scholar

[4] R.W. Pekala, J. Mater. Sci. 24 (1989) 3221.

Google Scholar

[5] A.A. Anappara, S. Rajeshkumar, P. Mukundan, P.R.S. Warrier, S. Ghosh, K.G.K. Warrier, Acta Mater.52 (2004) 369.

DOI: 10.1016/j.actamat.2003.09.035

Google Scholar

[6] L. Kocon, F. Despetis, J. Phalippou, J. Non-Cryst. Solids 225 (1998) 96.

Google Scholar

[7] T. Sumiyoshi, I. Adachi, R. Enomotoi, T. Iijima, R. Suda, M. Yokoyama, H. Yokogawa, J. Non-Cryst.Solids 225 (1998) 369.

DOI: 10.1016/s0022-3093(98)00057-x

Google Scholar

[8] C.J. Brinker, K.D. Keefer, D.W. Schaefer, C.S. Ashley, J.Non-Cryst. Solids 48 1982. 47.

Google Scholar

[9] G. Reichenauer, G.W. Scherer, J. Colloid Interf Sci. 236 (2001) 385.

Google Scholar

[10] D.J. Suh, T.J. Park, J.H. Sonn, J C. Lim, J. Mater. Sci. Lett. 18 (1999) 1473.

Google Scholar

[11] P.B. Sarawade, J.K. Kim, A. Hilonga, H.T. Kim, Korean, J. Chem. Eng. 27 (4) (2010) 1301.

Google Scholar

[12] G.T. Burns, Q. Deng, R. Field, J M. Hahn, C.W. Lengtz, J. Chem. Mater. 11 (1999) 1275.

Google Scholar

[13] A. C. Pierre, E. Elaloui, G. M. Pajonk, J. Langmuir. 14 (1998) 66.

Google Scholar

[14] W. C. Li, A. H. Lu, S. C. Guo, J. Colloid Interface Sci. 254 (2002) 153.

Google Scholar

[15] K. S. W. Sing, D. H. Everett, R. W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, J Pure Appl Chem. 57 (1985) 603.

DOI: 10.1002/9783527619474.ch11

Google Scholar

[16] X. C. Zhou, L. P. Zhong, Y. P. Xu, J. Inorg Mater. 44 (2008) 976.

Google Scholar

[17] S. Lee, Y. C. Chad, H. J. Hwang, H. J. Hwang, J.W. Moon, I. S. Han, J Mater Lett. 61 (2007) 3130.

Google Scholar