Influence of Heat Treatment on the Properties of CuInS2 Sensitized Solar Cells

Article Preview

Abstract:

CuInS2 has been deposited onto the mesoporous TiO2 films by in sequence growth of InxS and CuyS via successive ionic layer absorption and reaction process (SILAR) and post-annealing in sulfur ambiance. The influence of the temperature of the heat treatment on the microstructure of the CuInS2 sensitized TiO2 electrodes and the photovoltaic performance of the solar cells were investigated. The crystallization degree of CuInS2 thin films increased with the increase of the heating temperature from 400 oC, 450 oC, 500 oC to 550 oC. With the increase of the heating temperature, the photoelectric conversion efficiency of the CuInS2 sensitized solar cells sharply increased from 0.13% (450 oC) to 0.84% (550 oC, Voc = 0.37 V, Jsc = 8.44 mA/cm2, FF = 0.27). This is attributed to the well crystallization of the CuInS2 nanoparticles and the decrease of the defects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-69

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters, J. Phys. Chem. C 112(48) (2008) 18737–18753.

DOI: 10.1021/jp806791s

Google Scholar

[2] G. Hodes, Comparison of dye- and semiconductor-sensitized porous nanocrystalline liguid junction solar cells, J. Phys. Chem. C 112 (2008) 17778-17787.

DOI: 10.1021/jp803310s

Google Scholar

[3] F. Hetsch, X. Xu, H. Wang, S.V. Kershaw, A.L. Rogach, Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device topologies, J. Phys. Chem. Lett. 2(15) (2011) 1879-1887.

DOI: 10.1021/jz200802j

Google Scholar

[4] M. Graetzel, The advent of mesoscopic injection solar cells, Prog. Photovolt: Res. Appl. 14 (2006) 429.

DOI: 10.1002/pip.712

Google Scholar

[5] T. Soga, Nanostructured materials for solar energy conversion, Elsevier, Amsterdam, 2006.

Google Scholar

[6] W.W. Yu, L.H. Qu, W.Z. Guo, X.G. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS Nanocrystals, Chem. Mater. 15(14) (2003) 2854–2860.

DOI: 10.1021/cm034081k

Google Scholar

[7] A. Kongkanand, K. Tvrgy, K. Takechi, et al., Quantum dot solar cells. Tuning Photoreponse through size and shape control of CdSe-TiO2 architecture, J. Am. Chem. Soc. 130(12) (2008) 4007.

DOI: 10.1021/ja0782706

Google Scholar

[8] W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes, J. Am. Chem. Soc. 130(4) 1124-1125.

DOI: 10.1021/ja0777741

Google Scholar

[9] S.J. Moon, Y. Itzhaik, J.H. Yum, S.M. Zakeeruddin, G. Hodes, M. Graetzel, Sb2S3-based mesoscopic solar sell using an organic hole conductor, J. Phys. Chem. Lett. 1(10) (2010) 1524-1527.

DOI: 10.1021/jz100308q

Google Scholar

[10] R. Vogel, P. Hoyer, H. Weller, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors, J. Phys. Chem. 98 (1994) 3183–3188.

DOI: 10.1021/j100063a022

Google Scholar

[11] P.R. Yu, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik, Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots, J. Phys. Chem. B 110(50) (2006) 25451-25454.

DOI: 10.1021/jp064817b

Google Scholar

[12] Q.J. Jun, J.Z. Guo, S. Yong, W.W. Bing, C.Z. Qie, Preparation of CuInS2 thin films by ion layer gas reaction, J. Chin. Ceram. Soc. 33(1) (2005) 26-31.

Google Scholar

[13] B. Tell, J.L. Shay, H.M. Kasper, Electrical properties, optical properties, and band structure of CuGaS2 and CuInS2, Phys. Rev. B 4(8) (1971) 2463-2471.

Google Scholar

[14] C.H. Chang, Y.L. Lee, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells, Appl. Phys. Lett. 91(2) (2007) 053503.

DOI: 10.1063/1.2768311

Google Scholar

[15] M.P. Valkonen, T. Kanniainen, S. Lindroos, M. Leskel, E. Rauhala, Growth of ZnS, CdS and multilayer ZnS/CdS thin films by SILAR technique, Appl. Surf. Sci. 115(4) (1997) 386-392.

DOI: 10.1016/s0169-4332(97)00008-1

Google Scholar

[16] Q.L. Zhang, T. Xu, D. Butterfield, et al., Controlled placement of CdSe nanoparticles in diblock copolymer templates by electrophoretic deposition, Nano. Lett. 5(2) (2005) 357-361.

DOI: 10.1021/nl048103t

Google Scholar

[17] J.M. Feng, J.J. Han, X.J. Zhao, Synthesis of CuInS2 quantum dots on TiO2 porous films by solvothermal method for absorption layer of solar cells, Prog. Org. Coat. 64(2) (2009) 268-273.

DOI: 10.1016/j.porgcoat.2008.08.022

Google Scholar

[18] M. Nanu, J. Schoonman, A. Goossens, Solar-energy conversion in TiO2/CuInS2 nanocomposites, Adv. Funct. Mater. 15(1) (2005) 95-100.

DOI: 10.1002/adfm.200400150

Google Scholar

[19] J.J.Wu, W.T. Jiang, W.P. Liao, CuInS2 nanotube array on indium tin oxide:synthesis and photoelectrochemical properties, Chem. Comm. 46(32) (2010) 5885-5887.

DOI: 10.1039/c0cc01314e

Google Scholar

[20] M. Nanu, J. Schoonman, A. Goossens, Nanocomposite three-dimensional solar cells obtained by chemical spray deposition, Nano. Lett. 5(9) (2005) 1716-1719.

DOI: 10.1021/nl0509632

Google Scholar

[21] J. Alvarez-Garcia, A. Perez-Rodriguez, B. Barcones, et al., Polymorphism in CuInS2 epilayers: origin of additional raman modes, Appl. Phys. Lett. 80 (2002) 562-564.

DOI: 10.1063/1.1435800

Google Scholar