The Influence of Crystal Plane on Graphitization of Diamond by Structure Analysis

Article Preview

Abstract:

Under atmospheric pressure diamond is a metastable phase of carbon, which on heating can spontaneously transforms into a thermodynamically stable phase of carbon, graphite. No matter in diamond and in graphite, the six-fold ring is the smallest ring structure; they are very simillar in shape. The graphitization occurs when the rings of {111} plane are flattened. The {111} plane of diamond is the one that would graphitize preferentially and the (001) planes are most resistant to high temperature thermal graphitization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-146

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Chen, G.B. Xiao, J.X. Chen, C.Y. Wu, Research on the influence of machining introduced sub-surface defects and residue stress upon the mechanical properties of single crystal copper, Science China Technological Sciences, 53 (12): 3161 (2010).

DOI: 10.1007/s11431-010-4122-1

Google Scholar

[2] J.X. Chen, Y.C. Liang, Q.S. Bai, Y.L. Tang, M.J. Chen, Reseaching Nanometric Cutting of Copper Based On Molecular Dynamics, Journal of Computational and Theoretical Nanoscience, 5: 1485 (2008).

DOI: 10.1166/jctn.2008.806

Google Scholar

[3] S. Shimada, H. Tanaka, M. Higuchi, T. Yamaguchi, S. Honda and K. Obata. Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals. CIRP Annals - Manufacturing Technology. 53, 57 (2004).

DOI: 10.1016/s0007-8506(07)60644-1

Google Scholar

[4] M. Uemura. An analysis of the catalysis of Fe, Ni or Co on the wear of diamonds. Tribology International. 37, 887 (2004).

DOI: 10.1016/j.triboint.2004.07.004

Google Scholar

[5] Y. G. Gogotsi, A. Kailer, K. G. Nickel. Materials: Transformation of diamond to graphite. Nature. 401, 663 (1999).

DOI: 10.1038/44323

Google Scholar

[6] H. Chacham, Leonard Kleinman. Instabilities in Diamond under High Shear Stress. Physical Review Letters 85, 4904 (2000).

DOI: 10.1103/physrevlett.85.4904

Google Scholar

[7] V.L. Kuznetsov and Yu.V. Butenko. Nanodiamond Graphitization and Properties of Onion-Like Carbon. 192, 199 (2005).

DOI: 10.1007/1-4020-3322-2_15

Google Scholar

[8] F. Y. Xie, W. G. Xie, L. Gong, W. H. Zhang, S. H. Chen, Q. Z. Zhang and J. Chen, Surface characterization on graphitization of nanodiamond powder annealed in nitrogen ambient. Surface and Interface Analysis. 42, 1514 (2010).

DOI: 10.1002/sia.3350

Google Scholar

[9] G. Jungnickel, C.D. Latham, M.I. Heggie, Th. Frauenheim. On the graphitization of diamond surfaces: the importance of twins. Diamond and Related Materials. 5, 102 (1996).

DOI: 10.1016/0925-9635(96)80012-4

Google Scholar

[10] G. Kern and J. Hafner . Ab initio molecular-dynamics studies of the graphitization of flat and stepped diamond (111) surfaces. Phys. Rev. B. 58, 13167 (1998).

DOI: 10.1103/physrevb.58.13167

Google Scholar

[11] A.A. Gippius, R.A. Khmelnitsky, V.A. Dravin, A.V. Khomich. Defect-inducedgraphitisation in diamond implanted with light ions. Physica B: Condensed Matter. 308–310, 573 (2001).

DOI: 10.1016/s0921-4526(01)00738-4

Google Scholar

[12] L.S. Li, Xiang Zhao. Dangling bond-induced graphitization process on the (111) surface of diamond nanoparticles. J. Chem. Phys. 134, 044711 (2011).

DOI: 10.1063/1.3528726

Google Scholar

[13] T. Evans, D. H. Sauter. Etching of diamond surfaces with gases. 6, 429 (1961).

Google Scholar

[14] M. Seal. The Effect of Surface Orientation on the Graphitization of Diamond. Physica status solidi (b). 3, 658 (1963).

DOI: 10.1002/pssb.19630030408

Google Scholar

[15] G. Davies, T. Evans. Graphitization of Diamond at Zero Pressure and at a High Pressure. Proceedings of the Royal Society of London. A. 328, 413 (1972).

Google Scholar

[16] Nath. N. S. N. Proceedings of the Indian National Science Academy . A2, 143-152 (1935).

Google Scholar

[17] T. Evans, P. F. James. A Study of the Transformation of Diamond to Graphite. Proceedings of the Royal Society. 277, 260 (1964).

Google Scholar

[18] L. Vladimir. Kuznetsov, Yuriy V. Butenko. Diamond Phase Transitions at Nanoscale. (2006).

Google Scholar

[19] V. L. Kuznetsov, a) I. L. Zilberberg, Yu. V. Butenko, A. L. Chuvilin. Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. Journal of Applied Physics. 86, 863 (1999).

DOI: 10.1063/1.370816

Google Scholar

[20] R. H. Telling, C. J. Pickard, M. C. Payne, J. E. Field. Theoretical Strength and Cleavage of Diamond. Physical Review Letters. 84, 5160–5163 (2000).

DOI: 10.1103/physrevlett.84.5160

Google Scholar