Pressureless Sintering and Properties of Boron Carbide-Titanium Diboride Composites by In Situ Reaction

Article Preview

Abstract:

Pressureless sintering to obtain high density boron carbide-titanium diboride composites by in-situ reaction was studied. Pressureless sintering behavior of this material was investigated between 1800-2150 .The effects of composition, sintering temperature and tine were examined. Density up to 98.5% T.D. was reached at 2150. Maximum values of flexural strength (502 MPa), hardness (33 Gpa) and fracture toughnes (4.6 MPa·m1/2) were observed in the specimens containing 15 vol.% TiB2.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 525-526)

Pages:

321-324

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Thevenot F. Boron carbide – a comprehensive review. J Eur Ceram Soc 1990; 6: 205-25.

Google Scholar

[2] Jianxin D. Erosion wear of boron carbide ceramic nozzles by abrasive air jets. Mater Sci Eng A 2005; A408: 227-33.

DOI: 10.1016/j.msea.2005.07.029

Google Scholar

[3] Yanfeng C, Yip-Wah C, Shuyou L. Boron carbide and boron carbonitride thin films as protective coatings in ultra-high density hard disk drives. Surf Coat Technol 2006; 200: 4072-7.

DOI: 10.1016/j.surfcoat.2005.02.164

Google Scholar

[4] Dunner, Heuvel HJ, Horle M. Absorber materials for control rod systems of fast breeder reactors. J Nucl Mater 1984; 124: 185-94.

DOI: 10.1016/0022-3115(84)90022-9

Google Scholar

[5] Jianxin D, Jun Z, Yihua F, Zeliang D. Microstructure and mechanical properties of hot-pressed B4C/(W, Ti)C ceramic composites. Ceram Int 2002; 28: 425-30.

DOI: 10.1016/s0272-8842(01)00113-4

Google Scholar

[6] A. K. Suri, C. Subramanian, J. K. Sonber and T. S. R. Ch. Murthy. Synthesis and consolidation of boron carbide: a review. International Materials Reviews. 2010, 5, (1), 4-40.

DOI: 10.1179/095066009x12506721665211

Google Scholar

[7] H. Lee and R. F. Speyer. Pressureless sintering of boron carbide.J. Am. Ceram. Soc., 2003, 86, (9), 1468–1473.

Google Scholar

[8] R. F. Speyer and J. Lee. Advances in pressureless densification of boron carbide. J. Mater. Sci. , 2004, 39, 6017–6021.

DOI: 10.1023/b:jmsc.0000041698.23052.b9

Google Scholar

[9] Y. Kanno, K. Kawase, K. Nakano, Additive effect on sintering of boron carbide, Yogyo-Kyokai-Shi 95 (11) (1987) 1137–1140.

DOI: 10.2109/jcersj1950.95.1107_1137

Google Scholar

[10] T.K. Roy, C. Subramanian, A.K. Suri, Pressureless sintering of boron carbide, Ceram. Int. 32 (2006) 227–233.

DOI: 10.1016/j.ceramint.2005.02.008

Google Scholar

[11] A. Goldstein, Y. Geffen, A. Goldenberg, Boron carbide–zirconium boride in situ composites by the reactive pressureless sintering of boron carbide zirconia mixtures, J. Am. Ceram. Soc. 84 (3) (2001) 642–644.

DOI: 10.1111/j.1151-2916.2001.tb00714.x

Google Scholar

[12] Levin L, Frange N, Dariel MP. A novel approach for the preparation of B4C-basedcermets. Int J Refract Met Hard Mater 2000; 18: 131–135.

Google Scholar

[13] Changming Xu, Yanbing Cai , KatarinaFlodstrom , ZheshenLi , Saeid Esmaeilzadeh, Guo-Jun Zhang. Spark plasma sintering of B4C ceramics: The effects of milling medium and TiB2 addition. 2004; 24: 2303-11. Int. Journal of Refractory Metals and Hard Materials . 2012, 30: 139–144.

DOI: 10.1016/j.ijrmhm.2011.07.016

Google Scholar